skip to main content


Search for: All records

Creators/Authors contains: "Keagy, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations—mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency-dependent selection, agonistic character displacement, and ecological selection, results from ~30% of studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.

     
    more » « less
  2. Individuals can reduce sampling costs and increase foraging efficiency by using information provided by others. One simple form of social information use is delayed local enhancement or increased interest in a location because of the past presence of others. We tested for delayed local enhancement in two ecomorphs of stickleback fish, benthic and limnetic, from three different lakes with putative independent evolutionary origins. Two of these lakes have reproductively isolated ecomorphs (species-pairs), whereas in the third, a previously intact species-pair recently collapsed into a hybrid swarm. Benthic fish in both intact species-pair lakes were more likely to exhibit delayed local enhancement despite being more solitary than limnetic fish. Their behaviour and morphology suggest their current perceived risk and past evolutionary pressure from predation did not drive this difference. In the hybrid swarm lake, we found a reversal in patterns of social information use, with limnetic-looking fish showing delayed local enhancement rather than benthic-looking fish. Together, our results strongly support parallel differentiation of social learning differences in recently evolved fish species, although hybridization can apparently erode and possibly even reverse these differences.

     
    more » « less
  3. Human-induced changes in climate and habitats push populations to adapt to novel environments, including new sensory conditions, such as reduced visibility. We studied how colonizing newly formed glacial lakes with turbidity-induced low-visibility affects anti-predator behaviour in Icelandic threespine sticklebacks. We tested nearly 400 fish from 15 populations and four habitat types varying in visibility and colonization history in their reaction to two predator cues (mechano-visual versus olfactory) in high versus low-visibility light treatments. Fish reacted differently to the cues and were affected by lighting environment, confirming that cue modality and light levels are important for predator detection and evasion. Fish from spring-fed lakes, especially from the highlands (likely more diverged from marine fish than lowland fish), reacted fastest to mechano-visual cues and were generally most active. Highland glacial fish showed strong responses to olfactory cues and, counter to predictions from the flexible stem hypothesis, the greatest plasticity in response to light levels. This study, leveraging natural, repeated invasions of novel sensory habitats, (i) illustrates rapid changes in anti-predator behaviour that follow due to adaptation, early life experience, or both, and (ii) suggests an additional role for behavioural plasticity enabling population persistence in the face of frequent changes in environmental conditions. 
    more » « less
  4. Riesch, Rudiger (Ed.)