skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Keeys, Nolen I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Physically soft magnetic materials (PSMMs) represent an emerging class of materials that can change shape or rheology in response to an external magnetic field. However, until now, no studies have investigated using an electropermanent magnet (EPM) and magnetic repulsion to magnetically deform PSMMs. Such capabilities would enable the ability to deform PSMMs without the need for continuous electrical input and produce PSMM film deformation without an air gap, as would be required with magnetic attraction. To address this, we introduce a PSMM-EPM architecture in which the shape of a soft deformable thin film is controlled by switching between bistable on/off states of the EPM circuit. We characterized the deflection of a PSMM thin film when placed at controlled distances normal to the surface of the EPM and compared its response for cases when the EPM is in the ‘on’ and ‘off’ states. This work is the first to demonstrate a magnetically repelled soft deformable thin film that achieves two electronically-controlled modes of deformation through the on and off states of an EPM. This work has the potential to advance the development of new magneto-responsive soft materials and systems. 
    more » « less