- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Kehle, Christoph (3)
-
Shlapentokh-Rothman, Yakov (1)
-
Van_de_Moortel, Maxime (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Motivated by the strong cosmic censorship conjecture in the presence of matter, we study the Einstein equations coupled with a charged/massive scalar field with spherically symmetric characteristic data relaxing to a Reissner–Nordström event horizon. Contrary to the vacuum case, the relaxation rate is conjectured to be slow (nonintegrable), opening the possibility that the matter fields and the metric coefficients blow up in amplitude at the Cauchy horizon, not just in energy. We show that whether this blow-up in amplitude occurs or not depends on a novel oscillation condition on the event horizon which determines whether or not a resonance is excited dynamically. If the oscillation condition is satisfied, then the resonance is not excited and we show boundedness and continuous extendibility of the matter fields and the metric across the Cauchy horizon. If the oscillation condition is violated, then by the combined effect of slow decay and the resonance being excited, we show that the massive uncharged scalar field blows up in amplitude. In a companion paper, we will show that in that case a novel null contraction singularity forms at the Cauchy horizon, across which the metric is not continuously extendible in the usual sense. Heuristic arguments in the physics literature indicate that the oscillation condition should be satisfied generically on the event horizon. If these heuristics are true, then our result falsifies the continuous-formulation of strong cosmic censorship by means of oscillation.more » « lessFree, publicly-accessible full text available June 20, 2025
-
Kehle, Christoph (, Communications in Mathematical Physics)null (Ed.)
-
Kehle, Christoph; Shlapentokh-Rothman, Yakov (, Annales Henri Poincaré)null (Ed.)