skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kelkar, Ajit D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a transformative epoxy system with a microalgae-derived bio-binder from hydrothermal liquefaction processing (HTL). The obtained bio-binder not only served as a curing agent for conventional epoxy resin (e.g., EPON 862), but also acted as a modifying agent to enhance the thermal and mechanical properties of the conventional epoxy resin. This game-changing epoxy/bio-binder system outperformed the conventional epoxy/hardener system in thermal stability and mechanical properties. Compared to the commercial EPON 862/EPIKURE W epoxy product, our epoxy/bio-binder system (35 wt.% bio-binder addition with respect to the epoxy) increased the temperature of 60% weight loss from 394 °C to 428 °C and the temperature of maximum decomposition rate from 382 °C to 413 °C, while the tensile, flexural, and impact performance of the cured epoxy improved in all cases by up to 64%. Our research could significantly impact the USD 38.2 billion global market of the epoxy-related industry by not only providing better thermal and mechanical performance of epoxy-based composite materials, but also simultaneously reducing the carbon footprint from the epoxy industry and relieving waste epoxy pollution. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Abstract Traditionally, resins and hardeners are produced by chemical and petroleum industries. These industries make use of non-renewable energy resources like fossil fuels for manufacturing the resins and curing agents. In addition, most of the conventional curing agents used in epoxy resins are highly noxious in nature causing skin allergies and asthma. The green epoxy resin is capable of reducing these toxic effects but have few shortcomings including its cost and the mechanical performance of cured epoxy resin. On the other hand, there is a dearth of investigation in the evolution of green or sustainable curing agents known as bio-binders. This paper presents the prediction of mechanical properties by replacement of conventional curing agent with amine derivative synthesized from bio-degradable resource in a thermoset epoxy resin system. The properties are predicted by molecular dynamics simulations using Materials Studio Software. Graphical Abstract 
    more » « less
    Free, publicly-accessible full text available May 6, 2025
  3. Thermoset polymer composites, known for their outstanding thermal, mechanical, and chemical properties, have found applications in diverse fields, including aerospace and automotive industries. These polymers, once cured, cannot be recycled, making the end-of-life management of these composites very difficult and posing an environmental challenge. Conventional recycling methods are unsuitable for thermosets, forcing their accumulation in landfills and raising environmental concerns. One possible solution to overcome this concern is to use resins or curing agents, or both, made from biodegradable materials. This study explores the fabrication and characterization of polymer composites using a commercially available green curing agent made from biomass. The composite laminates were fabricated using HVARTM (Heated Vacuum Assisted Resin Transfer Molding) process. In this process, heat pads are used to increase the temperature of both the epoxy resin and the plain weave carbon fiber laminate to a desired temperature, providing ease of flow to the resin. Small coupons were cut from the laminate using a water jet machine to study the flexural behavior of the composite in accordance with ASTM testing standards and compared with composite coupons fabricated using conventional epoxy resin. 
    more » « less
    Free, publicly-accessible full text available May 20, 2025