Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
An increase in anthropogenic carbon dioxide is driving oceanic chemical shifts resulting in a long-term global decrease in ocean pH, colloquially termed ocean acidification (OA). Previous studies have demonstrated that OA can have negative physiological consequences for calcifying organisms, especially during early life-history stages. However, much of the previous research has focused on static exposure to future OA conditions, rather than variable exposure to elevatedpCO2, which is more ecologically relevant for nearshore species. This study examines the effects of OA on embryonic and larval Pacific razor clams (Siliqua patula), a bivalve that produces a concretion during early shell development. Larvae were spawned and cultured over 28 days under threepCO2treatments: a static highpCO2of 867 μatm, a variable, dielpCO2of 357 to 867 μatm, and an ambientpCO2of 357 μatm. Our results indicate that the calcium carbonate polymorphism of the concretion phase ofS. patulawas amorphous calcium carbonate which transitioned to vaterite during the advanced D-veliger stage, with a final polymorphic shift to aragonite in adults, suggesting an increased vulnerability to dissolution under OA. However, exposure to elevatedpCO2appeared to accelerate the transition of larvalS. patulafrom the concretion stage of shell development to complete calcification. There was no significant impact of OA exposure to elevated or variablepCO2conditions onS. patulagrowth or HSP70 and calmodulin gene expression. This is the first experimental study examining the response of a concretion producing bivalve to future predicted OA conditions and has important implications for experimentation on larval mollusks and bivalve management.more » « less
-
Abstract The thermally dynamic nearshore Beaufort Sea, Alaska, is experiencing climate change-driven temperature increases. Measuring thermal tolerance of broad whitefish (Coregonus nasus) and saffron cod (Eleginus gracilis), both important species in the Arctic ecosystem, will enhance understanding of species-specific thermal tolerances. The objectives of this study were to determine the extent that acclimating broad whitefish and saffron cod to 5°C and 15°C changed their critical thermal maximum (CTmax) and HSP70 protein and mRNA expression in brain, muscle and liver tissues. After acclimation to 5°C and 15°C, the species were exposed to a thermal ramping rate of 3.4°C · h−1 before quantifying the CTmax and HSP70 protein and transcript concentrations. Broad whitefish and saffron cod acclimated to 15°C had a significantly higher mean CTmax (27.3°C and 25.9°C, respectively) than 5°C-acclimated fish (23.7°C and 23.2°C, respectively), which is consistent with trends in CTmax between higher and lower acclimation temperatures. There were species-specific differences in thermal tolerance with 15°C-acclimated broad whitefish having higher CTmax and HSP70 protein concentrations in liver and muscle tissues than saffron cod at both acclimation temperatures. Tissue-specific differences were quantified, with brain and muscle tissues having the highest and lowest HSP70 protein concentrations, respectively, for both species and acclimation temperatures. The differences in broad whitefish CTmax between the two acclimation temperatures could be explained with brain and liver tissues from 15°C acclimation having higher HSP70a-201 and HSP70b-201 transcript concentrations than control fish that remained in lab-acclimation conditions of 8°C. The shift in CTmax and HSP70 protein and paralogous transcripts demonstrate the physiological plasticity that both species possess in responding to two different acclimation temperatures. This response is imperative to understand as aquatic temperatures continue to elevate.more » « less
-
Here, we explicitly define a half-cell reaction approach for pH calculation using the electrode couple comprised of the solid-state chloride ion-selective electrode (Cl-ISE) as the reference electrode and the hydrogen ionselective ion-sensitive field effect transistor (ISFET) of the Honeywell Durafet as the hydrogen ion (H+)-sensitive measuring or working electrode. This new approach splits and isolates the independent responses of the Cl-ISE to the chloride ion (Cl−) (and salinity) and the ISFET to H+ (and pH), and calculates pH directly on the total scale (pHEXT total) in molinity (mol (kg-soln)−1) concentration units. We further apply and compare pHEXT total calculated using the half-cell and the existing complete cell reaction (defined by Martz et al. (2010)) approaches using measurements from two SeapHOx sensors deployed in a test tank. Salinity (on the Practical Salinity Scale) and pH oscillated between 1 and 31 and 6.9 and 8.1, respectively, over a six-day period. In contrast to established Sensor Best Practices, we employ a new calibration method where the calibration of raw pH sensor timeseries are split out as needed according to salinity. When doing this, pHEXT total had root-mean squared errors ranging between ±0.0026 and ±0.0168 pH calculated using both reaction approaches relative to pHtotal of the discrete bottle samples (pHdisc total). Our results further demonstrate the rapid response of the Cl-ISE reference to variable salinity with changes up to ±12 (30 min)−1. Final calculated pHEXT total were ≤±0.012 pH when compared to pHdisc total following salinity dilution or concentration. These results are notably in contrast to those of the few in situ field deployments over similar environmental conditions that demonstrated pHEXT total calculated using the Cl-ISE as the reference electrode had larger uncertainty in nearshore waters. Therefore, additional work beyond the correction of variable temperature and salinity conditions in pH calculation using the Cl-ISE is needed to examine the effects of other external stimuli on in situ electrode response. Furthermore, whereas past work has focused on in situ reference electrode response, greater scrutiny of the ISFET as the H+-sensitive measuring electrode for pH measurement in natural waters is also needed.more » « less
-
Abstract The adverse conditions of acidification on sensitive marine organisms have led to the investigation of bioremediation methods as a way to abate local acidification. This phytoremediation, by macrophytes, is expected to reduce the severity of acidification in nearshore habitats on short timescales. Characterizing the efficacy of phytoremediation can be challenging as residence time, tidal mixing, freshwater input, and a limited capacity to fully constrain the carbonate system can lead to erroneous conclusions. Here, we present in situ observations of carbonate chemistry relationships to seagrass habitats by comparing dense (DG), patchy (PG), and no grass (NG) Zostera marina pools in the high intertidal experiencing intermittent flooding. High-frequency measurements of pH, alkalinity (TA), and total-CO 2 elucidate extreme diel cyclicity in all parameters. The DG pool displayed frequent decoupling between pH and aragonite saturation state (Ω arg ) suggesting pH-based inferences of acidification remediation by seagrass can be misinterpreted as pH and Ω arg can be independent stressors for some bivalves. Estimates show the DG pool had an integrated ΔTA of 550 μmol kg −1 over a 12 h period, which is ~ 60% > the PG and NG pools. We conclude habitats with mixed photosynthesizers (i.e., PG pool) result in less decoupling between pH and Ω arg .more » « less
-
null (Ed.)Abstract. The western Arctic Ocean, including its shelves and coastal habitats, has become a focus in ocean acidification research over the past decade as thecolder waters of the region and the reduction of sea ice appear to promote the uptake of excess atmospheric CO2. Due to seasonal sea icecoverage, high-frequency monitoring of pH or other carbonate chemistry parameters is typically limited to infrequent ship-based transects duringice-free summers. This approach has failed to capture year-round nearshore carbonate chemistry dynamics which is modulated by biological metabolismin response to abundant allochthonous organic matter to the narrow shelf of the Beaufort Sea and adjacent regions. The coastline of the Beaufort Seacomprises a series of lagoons that account for > 50 % of the land–sea interface. The lagoon ecosystems are novel features that cycle between“open” and “closed” phases (i.e., ice-free and ice-covered, respectively). In this study, we collected high-frequency pH, salinity,temperature, and photosynthetically active radiation (PAR) measurements in association with the Beaufort Lagoon Ecosystems – Long Term Ecological Research program – for an entire calendar yearin Kaktovik Lagoon, Alaska, USA, capturing two open-water phases and one closed phase. Hourly pH variability during the open-water phases are someof the fastest rates reported, exceeding 0.4 units. Baseline pH varied substantially between the open phase in 2018 and open phase in 2019 from ∼ 7.85to 8.05, respectively, despite similar hourly rates of change. Salinity–pH relationships were mixed during all three phases, displaying nocorrelation in the 2018 open phase, a negative correlation in the 2018/19 closed phase, and a positive correlation during the 2019 open phase. The high frequency of pH variabilitycould partially be explained by photosynthesis–respiration cycles as correlation coefficients between daily average pH and PAR were 0.46 and 0.64for 2018 and 2019 open phases, respectively. The estimated annual daily average CO2 efflux (from sea to atmosphere) was5.9 ± 19.3 mmolm-2d-1, which is converse to the negative influx of CO2 estimated for the coastal Beaufort Seadespite exhibiting extreme variability. Considering the geomorphic differences such as depth and enclosure in Beaufort Sea lagoons, furtherinvestigation is needed to assess whether there are periods of the open phase in which lagoons are sources of carbon to the atmosphere, potentiallyoffsetting the predicted sink capacity of the greater Beaufort Sea.more » « less
An official website of the United States government
