skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kelley, Kyle P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 14, 2024
  2. Abstract

    The presence of the top electrode on hafnium oxide‐based thin films during processing has been shown to drive an increase in the amount of metastable ferroelectric orthorhombic phase and polarization performance. This “Clamping Effect,” also referred to as the Capping or Confinement Effect, is attributed to the mechanical stress and confinement from the top electrode layer. However, other contributions to orthorhombic phase stabilization have been experimentally reported, which may also be affected by the presence of a top electrode. In this study, it is shown that the presence of the top electrode during thermal processing results in larger tensile biaxial stress magnitudes and concomitant increases in ferroelectric phase fraction and polarization response, whereas film chemistry, microstructure, and crystallization temperature are not affected. Through etching experiments and measurement of stress evolution for each processing step, it is shown that the top electrode locally inhibits out‐of‐plane expansion in the HZO during crystallization, which prevents equilibrium monoclinic phase formation and stabilizes the orthorhombic phase. This study provides a mechanistic understanding of the clamping effect and orthorhombic phase formation in ferroelectric hafnium oxide‐based thin films, which informs the future design of these materials to maximize ferroelectric phase purity and corresponding polarization behavior.

     
    more » « less
  3. Abstract

    Mixed cesium‐ and formamidinium‐based metal halide perovskites (MHPs) are emerging as ideal photovoltaic materials due to their promising performance and improved stability. While theoretical predictions suggest that a larger composition ratio of Cs (≈30%) aids the formation of a pure photoactive α‐phase, high photovoltaic performances can only be realized in MHPs with moderate Cs ratios. In fact, elemental mixing in a solution can result in chemical complexities with non‐equilibrium phases, causing chemical inhomogeneities localized in the MHPs that are not traceable with global device‐level measurements. Thus, the chemical origin of the complexities and understanding of their effect on stability and functionality remain elusive. Herein, through spatially resolved analyses, the fate of local chemical structures, particularly the evolution pathway of non‐equilibrium phases and the resulting local inhomogeneities in MHPs is comprehensively explored. It is shown that Cs‐rich MHPs have substantial local inhomogeneities at the initial crystallization step, which do not fully convert to the α‐phase and thereby compromise the optoelectronic performance of the materials. These fundamental observations allow the authors to draw a complete chemical landscape of MHPs including nanoscale chemical mechanisms, providing indispensable insights into the realization of a functional materials platform.

     
    more » « less
  4. Abstract

    Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices.

     
    more » « less