The physical origin of the seeds of supermassive black holes (SMBHs), with postulated initial masses ranging from ∼105 M⊙ to as low as ∼102 M⊙, is currently unknown. Most existing cosmological hydrodynamic simulations adopt very simple, ad hoc prescriptions for BH seeding and seed at unphysically high masses ∼105–106 M⊙. In this work, we introduce a novel subgrid BH seeding model for cosmological simulations that is directly calibrated to highresolution zoom simulations that explicitly resolve ∼103 M⊙ seeds forming within haloes with pristine, dense gas. We trace the BH growth along galaxy merger trees until their descendants reach masses of ∼104 or 105 M⊙. The results are used to build a new stochastic seeding model that directly seeds these descendants in lower resolution versions of our zoom region. Remarkably, we find that by seeding the descendants simply based on total galaxy mass, redshift and an environmental richness parameter, we can reproduce the results of the detailed gasbased seeding model. The baryonic properties of the host galaxies are well reproduced by the massbased seeding criterion. The redshiftdependence of the massbased criterion captures the combined influence of halo growth, dense gas formation, and metal enrichment on the formation of ∼103 M⊙ seeds. The environmentbased seeding criterion seeds the descendants in rich environments with higher numbers of neighbouring galaxies. This accounts for the impact of unresolved merger dominated growth of BHs, which produces faster growth of descendants in richer environments with more extensive BH merger history. Our new seed model will be useful for representing a variety of lowmass seeding channels within nextgeneration larger volume uniform cosmological simulations.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

ABSTRACT 
ABSTRACT Massive black hole (MBH) binaries can form following a galaxy merger, but this may not always lead to a MBH binary merger within a Hubble time. The merger timescale depends on how efficiently the MBHs lose orbital energy to the gas and stellar background, and to gravitational waves (GWs). In systems where these mechanisms are inefficient, the binary inspiral time can be long enough for a subsequent galaxy merger to bring a third MBH into the system. In this work, we identify and characterize the population of triple MBH systems in the Illustris cosmological hydrodynamic simulation. We find a substantial occurrence rate of triple MBH systems: in our fiducial model, 22 per cent of all binary systems form triples, and $\gt 70{{\ \rm per\ cent}}$ of these involve binaries that would not otherwise merge by z = 0. Furthermore, a significant subset of triples (6 per cent of all binaries, or more than a quarter of all triples) form a triple system at parsec scales, where the three BHs are most likely to undergo a strong threebody interaction. Crucially, we find that the rate of triple occurrence has only a weak dependence on key parameters of the binary inspiral model (binary eccentricity and stellar losscone refilling rate). We also do not observe strong trends in the host galaxy properties for binary versus triple MBH populations. Our results demonstrate the potential for triple systems to increase MBH merger rates, thereby enhancing the lowfrequency GW signals detectable with pulsar timing arrays and with LISA.

ABSTRACT A longstanding problem in galactic simulations is to resolve the dynamical friction (DF) force acting on massive black hole particles when their masses are comparable to or less than the background simulation particles. Many subgrid models based on the traditional Chandrasekhar DF formula have been proposed, yet they suffer from fundamental ambiguities in the definition of some terms in Chandrasekhar’s formula when applied to real galaxies, as well as difficulty in evaluating continuous quantities from (spatially) discrete simulation data. In this work, we present a new subgrid DF estimator based on the discrete nature of Nbody simulations, which also avoids the ambiguously defined quantities in Chandrasekhar’s formula. We test our estimator in the gizmo code and find that it agrees well with highresolution simulations where DF is fully captured, with negligible additional computational cost. We also compare it with a Chandrasekhar estimator and discuss its applications in real galactic simulations.more » « less

Abstract Hundreds of millions of supermassive black hole binaries are expected to contribute to the gravitationalwave signal in the nanohertz frequency band. Their signal is often approximated either as an isotropic Gaussian stochastic background with a powerlaw spectrum or as an individual source corresponding to the brightest binary. In reality, the signal is best described as a combination of a stochastic background and a few of the brightest binaries modeled individually. We present a method that uses this approach to efficiently create realistic pulsar timing array data sets using synthetic catalogs of binaries based on the Illustris cosmological hydrodynamic simulation. We explore three different properties of such realistic backgrounds that could help distinguish them from those formed in the early universe: (i) their characteristic strain spectrum, (ii) their statistical isotropy, and (iii) the variance of their spatial correlations. We also investigate how the presence of confusion noise from a stochastic background affects detection prospects of individual binaries. We calculate signaltonoise ratios of the brightest binaries in different realizations for a simulated pulsar timing array based on the NANOGrav 12.5 yr data set extended to a time span of 15 yr. We find that ∼6% of the realizations produce systems with signaltonoise ratios larger than 5, suggesting that individual systems might soon be detected (the fraction increases to ∼41% at 20 yr). These can be taken as a pessimistic prediction for the upcoming NANOGrav 15 yr data set, since it does not include the effect of potentially improved timing solutions and newly added pulsars.more » « less

Abstract The delay time distribution of neutron star mergers provides critical insights into binary evolution processes and the merger rate evolution of compact object binaries. However, current observational constraints on this delay time distribution rely on the small sample of Galactic double neutron stars (with uncertain selection effects), a single multimessenger gravitational wave event, and indirect evidence of neutron star mergers based on r process enrichment. We use a sample of 68 host galaxies of short gammaray bursts to place novel constraints on the delay time distribution and leverage this result to infer the merger rate evolution of compact object binaries containing neutron stars. We recover a powerlaw slope of α = − 1.83 − 0.39 + 0.35 (median and 90% credible interval) with α < −1.31 at 99% credibility, a minimum delay time of t min = 184 − 79 + 67 Myr with t min > 72 Myr at 99% credibility, and a maximum delay time constrained to t max > 7.95 Gyr at 99% credibility. We find these constraints to be broadly consistent with theoretical expectations, although our recovered powerlaw slope is substantially steeper than the conventional value of α = −1, and our minimum delay time is larger than the typically assumed value of 10 Myr. Pairing this cosmological probe of the fate of compact object binary systems with the Galactic population of double neutron stars will be crucial for understanding the unique selection effects governing both of these populations. In addition to probing a significantly larger redshift regime of neutron star mergers than possible with current gravitational wave detectors, complementing our results with future multimessenger gravitational wave events will also help determine if short gammaray bursts ubiquitously result from compact object binary mergers.more » « less

ABSTRACT Observations of massive galaxies at low redshift have revealed approximately linear scaling relations between the mass of a supermassive black hole (SMBH) and properties of its host galaxy. How these scaling relations evolve with redshift and whether they extend to lowermass galaxies, however, remain open questions. Recent galaxy formation simulations predict a delayed, or ‘twophase,’ growth of SMBHs: slow, highly intermittent BH growth due to repeated gas ejection by stellar feedback in lowmass galaxies, followed by more sustained gas accretion that eventually brings BHs on to the local scaling relations. The predicted twophase growth implies a steep increase, or ‘kink,’ in BHgalaxy scaling relations at a stellar mass $\rm {M}_{*}\sim 5\times 10^{10}$ M⊙. We develop a parametric, semianalytic model to compare different SMBH growth models against observations of the quasar luminosity function (QLF) at z ∼ 0.5−4. We compare models in which the relation between SMBH mass and galaxy mass is purely linear versus twophase models. The models are anchored to the observed galaxy stellar mass function, and the BH mass functions at different redshifts are consistently connected by the accretion rates contributing to the QLF. The best fits suggest that twophase evolution is significantly preferred by the QLF data over a purely linear scaling relation. Moreover, when the model parameters are left free, the twophase model fits imply a transition mass consistent with that predicted by simulations. Our analysis motivates further observational tests, including measurements of BH masses and active galactic nuclei activity at the lowmass end, which could more directly test twophase SMBH growth.more » « less

ABSTRACT We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $z$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{1}$ haloes by $z$ = 7) using a (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gasbased seeding prescriptions wherein $M_{\mathrm{seed}}=10^4\!\!10^6\, {\rm M}_{\odot }\,h^{1}$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metalpoor gas mass (defined as $\tilde{M}_{\mathrm{h}}$ and $\tilde{M}_{\mathrm{sf,mp}}$, respectively, in units of Mseed). We find that a seed model with $\tilde{M}_{\mathrm{sf,mp}}=5$ and $\tilde{M}_{\mathrm{h}}=3000$ successfully produces a $z$ ∼ 6 quasar with $\sim 10^9\, {\rm M}_{\odot }$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $z$ ≳ 9, causing an early boost in BH mass at a time when accretiondriven BH growth is negligible. With more stringent seeding conditions (e.g. $\tilde{M}_{\mathrm{sf,mp}}=1000$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $z$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for superEddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $z$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations.

ABSTRACT We study gas inflows on to supermassive black holes using hydrodynamics simulations of isolated galaxies and idealized galaxy mergers with an explicit, multiphase interstellar medium (ISM). Our simulations use the recently developed ISM and stellar evolution model called Stars and MUltiphase Gas in GaLaxiEs (SMUGGLE). We implement a novel superLagrangian refinement scheme that increases the gas mass resolution in the immediate neighbourhood of the black holes (BHs) to accurately resolve gas accretion. We do not include black hole feedback in our simulations. We find that the complex and turbulent nature of the SMUGGLE ISM leads to highly variable BH accretion. BH growth in SMUGGLE converges at gas mass resolutions ≲3 × 103 M⊙. We show that the low resolution simulations combined with the superLagrangian refinement scheme are able to produce central gas dynamics and BH accretion rates very similar to that of the uniform high resolution simulations. We further explore BH fueling by simulating galaxy mergers. The interaction between the galaxies causes an inflow of gas towards the galactic centres and results in elevated and bursty star formation. The peak gas densities near the BHs increase by orders of magnitude resulting in enhanced accretion. Our results support the idea that galaxy mergers can trigger AGN activity, although the instantaneous accretion rate depends strongly on the local ISM. We also show that the level of mergerinduced enhancement of BH fueling predicted by the SMUGGLE model is much smaller compared to the predictions by simulations using an effective equation of state model of the ISM.

Abstract With strong evidence of a commonspectrum stochastic process in the most recent data sets from the NANOGrav Collaboration, the European Pulsar Timing Array (PTA), Parkes PTA, and the International PTA, it is crucial to assess the effects of the several astrophysical and cosmological sources that could contribute to the stochastic gravitational wave background (GWB). Using the same data set creation and injection techniques as in Pol et al., we assess the separability of multiple GWBs by creating single and multiple GWB source data sets. We search for these injected sources using Bayesian PTA analysis techniques to assess recovery and separability of multiple astrophysical and cosmological backgrounds. For a GWB due to supermassive black hole binaries and an underlying weaker background due to primordial gravitational waves with a GW energydensity ratio of Ω_{PGW}/Ω_{SMBHB}= 0.5, the Bayes’ factor for a second process exceeds unity at 17 yr, and increases with additional data. At 20 yr of data, we are able to constrain the spectral index and amplitude of the weaker GWB at this density ratio to a fractional uncertainty of 64% and 110%, respectively, using current PTA methods and techniques. Using these methods and findings, we outline a basic protocol to search for multiple backgrounds in future PTA data sets.

ABSTRACT Possible formation scenarios of supermassive black holes (BHs) in the early universe include rapid growth from less massive seed BHs via superEddington accretion or runaway mergers, yet both of these scenarios would require seed BHs to efficiently sink to and be trapped in the Galactic Centre via dynamical friction. This may not be true for their complicated dynamics in clumpy highz galaxies. In this work, we study this ‘sinking problem’ with stateoftheart highresolution cosmological simulations, combined with both direct Nbody integration of seed BH trajectories and postprocessing of randomly generated test particles with a newly developed dynamical friction estimator. We find that seed BHs less massive than $10^8\, \mathrm{M}_\odot$ (i.e. all but the alreadysupermassive seeds) cannot efficiently sink in typical highz galaxies. We also discuss two possible solutions: dramatically increasing the number of seeds such that one seed can end up trapped in the Galactic Centre by chance, or seed BHs being embedded in dense structures (e.g. star clusters) with effective masses above the mass threshold. We discuss the limitations of both solutions.more » « less