Recent mass loss from ice sheets and ice shelves is now persistent and prolonged enough that it impacts downstream oceanographic conditions. To demonstrate this, we use an ensemble of coupled GISS‐E2.1‐G simulations forced with historical estimates of anomalous freshwater, in addition to other climate forcings, from 1990 through 2019. There are detectable differences in zonal‐mean sea surface temperatures (SST) and sea ice in the Southern Ocean, and in regional sea level around Antarctica and in the western North Atlantic. These impacts mostly improve the model's representation of historical changes, including reversing the forced trends in Antarctic sea ice. The changes in SST may have implications for estimates of the SST pattern effect on climate sensitivity and for cloud feedbacks. We conclude that the changes are sufficiently large that model groups should strive to include more accurate estimates of these drivers in all‐forcing historical simulations in future coupled model intercomparisons.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kelley, Maxwell (3)
-
Nazarenko, Larissa (2)
-
Aleinov, Igor (1)
-
Busecke, Julius_J_M (1)
-
Campin, Jean‐Michel (1)
-
Cook, Benjamin I. (1)
-
Doddridge, Edward W. (1)
-
Li, Qian (1)
-
Mankoff, Kenneth_D (1)
-
Marshall, John (1)
-
Marshall, John_C (1)
-
McDermid, Sonali Shukla (1)
-
Puma, Michael J. (1)
-
Roach, Lettie_A (1)
-
Romanou, Anastasia (1)
-
Rye, Craig_D (1)
-
Schmidt, Gavin_A (1)
-
Seager, Richard (1)
-
Song, Hajoon (1)
-
Williams, A. Park (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Cook, Benjamin I. ; McDermid, Sonali Shukla ; Puma, Michael J. ; Williams, A. Park ; Seager, Richard ; Kelley, Maxwell ; Nazarenko, Larissa ; Aleinov, Igor ( , Journal of Geophysical Research: Atmospheres)
Abstract There is strong evidence that the expansion and intensification of irrigation over the twentieth century has affected climate in many regions. However, it remains uncertain if these irrigation effects, including buffered warming trends, will weaken or persist under future climate change conditions. Using a 20‐member climate model ensemble simulation, we demonstrate that irrigation will continue to attenuate greenhouse gas‐forced warming and soil moisture drying in many regions over the 21st century, including Mexico, the Mediterranean, Southwest Asia, and China. Notably, this occurs without any further expansion or intensification of irrigation beyond current levels, even while greenhouse gas forcing steadily increases. However, the magnitude and significance of these moderating irrigation effects vary across regions and are highly sensitive to the background climate state and the degree to which evapotranspiration is supply (moisture) versus demand (energy) limited. Further, limitations on water and land availability may restrict our ability to maintain modern irrigation rates into the future. Nevertheless, it is likely that irrigation, alongside other components of intensive land management, will continue to strongly modulate regional climate impacts in the future. Irrigation should therefore be considered in conjunction with other key regional anthropogenic forcings (e.g., land cover change and aerosols) when investigating the local manifestation of global climate drivers (e.g., greenhouse gases) in model projections.
-
Doddridge, Edward W. ; Marshall, John ; Song, Hajoon ; Campin, Jean‐Michel ; Kelley, Maxwell ; Nazarenko, Larissa ( , Geophysical Research Letters)
Abstract Anthropogenic influences have led to a strengthening and poleward shift of westerly winds over the Southern Ocean, especially during austral summer. We use observations, an idealized eddy‐resolving ocean sea ice channel model, and a global coupled model to explore the Southern Ocean response to a step change in westerly winds. Previous work hypothesized a two time scale response for sea surface temperature. Initially, Ekman transport cools the surface before sustained upwelling causes warming on decadal time scales. The fast response is robust across our models and the observations: We find Ekman‐driven cooling in the mixed layer, mixing‐driven warming below the mixed layer, and a small upwelling‐driven warming at the temperature inversion. The long‐term response is inaccessible from observations. Neither of our models shows a persistent upwelling anomaly, or long‐term, upwelling‐driven subsurface warming. Mesoscale eddies act to oppose the anomalous wind‐driven upwelling, through a process known as eddy compensation, thereby preventing long‐term warming.