Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2023
-
Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics—including dephasing, inhomogeneity, and strain—for a MoSe 2 monolayer and identify both promising and unfavorablemore »Free, publicly-accessible full text available June 7, 2023
-
Using Mouse Metatarsal and Pisiform Ossification to Identify Genes Underlying Growth Plate FormationFree, publicly-accessible full text available May 1, 2023
-
Free, publicly-accessible full text available May 1, 2023
-
Free, publicly-accessible full text available January 1, 2023
-
Two-toed (Choloepus sp.) and three-toed (Bradypus sp.) sloths possess short, rounded pisiforms that are rare among mammals and differ from other members of Xenarthra like the giant anteater (Myrmecophaga tridactyla) which retain elongated, rod-like pisiforms in common with most mammals. Using photographs, radiographs, and μCT, we assessed ossification patterns in the pisiform and the paralogous tarsal, the calcaneus, for two-toed sloths, three-toed sloths, and giant anteaters to determine the process by which pisiform reduction occurs in sloths and compare it to other previously studied examples of pisiform reduction in humans and orangutans. Both extant sloth genera achieve pisiform reduction throughmore »Free, publicly-accessible full text available November 14, 2022
-
Abstract Background This scoping review summarized research on (a) seasonal differences in physical activity and sedentary behavior, and (b) specific weather indices associated with those behaviors. Methods PubMed, CINAHL, and SPORTDiscus were searched to identify relevant studies. After identifying and screening 1459 articles, data were extracted from 110 articles with 118,189 participants from 30 countries (almost exclusively high-income countries) on five continents. Results Both physical activity volume and moderate-to-vigorous physical activity (MVPA) were greater in summer than winter. Sedentary behavior was greater in winter than either spring or summer, and insufficient evidence existed to draw conclusions about seasonal differences inmore »Free, publicly-accessible full text available December 1, 2022
-
Free, publicly-accessible full text available October 1, 2022
-
We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activitymore »Free, publicly-accessible full text available July 29, 2022
-
Hox genes are key developmental patterning genes that impact segmental identity and skeletal patterning. Hox11 genes are known to impact wrist and ankle development and are expressed around the developing pisiform and calcaneus. These paralogous bones in the wrist and ankle are the only carpal and tarsal to form a growth plate in mammals, although humans have lost this growth plate and the associated primary ossification center in the pisiform. Loss-of-function mutations to Hoxa11 and Hoxd11 result in pisiform truncation and appear to also cause at least some disorganization of the growth plate cartilage; however, little is known about themore »