skip to main content

Search for: All records

Creators/Authors contains: "Kelsey, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2023
  2. Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics—including dephasing, inhomogeneity, and strain—for a MoSe 2 monolayer and identify both promising and unfavorablemore »areas for quantum information applications. We, furthermore, apply the same technique to a MoSe 2 /WSe 2 heterostructure. Despite the notable presence of strain and dielectric environment changes, coherent and incoherent coupling and interlayer exciton lifetimes are mostly robust across the sample. This uniformity is despite a significantly inhomogeneous interlayer exciton photoluminescence distribution that suggests a bad sample for device applications. This robustness strengthens the case for TMDs as a next-generation material platform in quantum information science and beyond.« less
    Free, publicly-accessible full text available June 7, 2023
  3. Free, publicly-accessible full text available May 1, 2023
  4. Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available January 1, 2023
  6. Two-toed (Choloepus sp.) and three-toed (Bradypus sp.) sloths possess short, rounded pisiforms that are rare among mammals and differ from other members of Xenarthra like the giant anteater (Myrmecophaga tridactyla) which retain elongated, rod-like pisiforms in common with most mammals. Using photographs, radiographs, and μCT, we assessed ossification patterns in the pisiform and the paralogous tarsal, the calcaneus, for two-toed sloths, three-toed sloths, and giant anteaters to determine the process by which pisiform reduction occurs in sloths and compare it to other previously studied examples of pisiform reduction in humans and orangutans. Both extant sloth genera achieve pisiform reduction throughmore »the loss of a secondary ossification center and the likely disruption of the associated growth plate based on an unusually porous subchondral surface. This represents a third unique mechanism of pisiform reduction among mammals, along with primary ossification center loss in humans and retention of two ossification centers with likely reduced growth periods in orangutans. Given the remarkable similarities between two-toed and three-toed sloth pisiform ossification patterns and the presence of pisiform reduction in fossil sloths, extant sloth pisiform morphology does not appear to represent a recent convergent adaptation to suspensory locomotion, but instead is likely to be an ancestral trait of Folivora that emerged early in the radiation of extant and fossil sloths.« less
    Free, publicly-accessible full text available November 14, 2022
  7. Abstract Background This scoping review summarized research on (a) seasonal differences in physical activity and sedentary behavior, and (b) specific weather indices associated with those behaviors. Methods PubMed, CINAHL, and SPORTDiscus were searched to identify relevant studies. After identifying and screening 1459 articles, data were extracted from 110 articles with 118,189 participants from 30 countries (almost exclusively high-income countries) on five continents. Results Both physical activity volume and moderate-to-vigorous physical activity (MVPA) were greater in summer than winter. Sedentary behavior was greater in winter than either spring or summer, and insufficient evidence existed to draw conclusions about seasonal differences inmore »light physical activity. Physical activity volume and MVPA duration were positively associated with both the photoperiod and temperature, and negatively associated with precipitation. Sedentary behavior was negatively associated with photoperiod and positively associated with precipitation. Insufficient evidence existed to draw conclusions about light physical activity and specific weather indices. Many weather indices have been neglected in this literature (e.g., air quality, barometric pressure, cloud coverage, humidity, snow, visibility, windchill). Conclusions The natural environment can influence health by facilitating or inhibiting physical activity. Behavioral interventions should be sensitive to potential weather impacts. Extreme weather conditions brought about by climate change may compromise health-enhancing physical activity in the short term and, over longer periods of time, stimulate human migration in search of more suitable environmental niches.« less
    Free, publicly-accessible full text available December 1, 2022
  8. Free, publicly-accessible full text available October 1, 2022
  9. We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activitymore »during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans .« less
    Free, publicly-accessible full text available July 29, 2022
  10. Hox genes are key developmental patterning genes that impact segmental identity and skeletal patterning. Hox11 genes are known to impact wrist and ankle development and are expressed around the developing pisiform and calcaneus. These paralogous bones in the wrist and ankle are the only carpal and tarsal to form a growth plate in mammals, although humans have lost this growth plate and the associated primary ossification center in the pisiform. Loss-of-function mutations to Hoxa11 and Hoxd11 result in pisiform truncation and appear to also cause at least some disorganization of the growth plate cartilage; however, little is known about themore »nature of this disorganization or if ossification timing is impacted by Hox11 genes. The present study investigates the role of Hoxa11 and Hoxd11 in pisiform growth plate organization and ossification timing. We conducted histological analysis of the pisiform growth plate in juvenile mice with Hoxa11 and Hoxd11 loss-of-function mutations and compared them to ossification patterns observed in age- and genotype-matched whole-mount specimens that were cleared and stained with Alizarin red and Alcian blue to visualize bone and cartilage, respectively. Histological analysis reveals a dosage-dependent impact of Hox11 mutations on pisiform ossification to both the primary and secondary ossification center. As the number of Hox11 mutation alleles increase, less bone is present in the early primary ossification center compared to age-matched specimens. In specimens with three loss-of-function alleles, no trabeculae or growth plate organization are visible at P9, when both are well established in wild type specimens. Cleared and stained specimens indicate a possible pseudo epiphysis forming with Hoxd11 mutation, while Hoxa11 knockout specimens have not formed any visible epiphysis or calcification by P9. These results indicate that ossification timing and patterns, along with growth plate organization, are affected by Hox11 mutations during early pisiform ossification. Furthermore, Hoxa11 and Hoxd11 alter the pisiform epiphysis differently, suggesting that each plays a specific role in formation of the ossification front and epiphysis ossification either by influencing timing, ossification progression, or both. Further work is needed to understand the mechanisms by which Hox genes impact ossification patterns and timing, as well as the differential roles of Hoxa11 and Hoxd11 in growth plate organization and epiphysis formation.« less