skip to main content

Search for: All records

Creators/Authors contains: "Kempton D. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rutkowski L. ; Scherer R. ; Korytkowski M. ; Pedrycz W. ; Tadeusiewicz R. ; Zurada J. (Ed.)
    In this work, we investigate the impact of class imbalance on the accuracy and diversity of synthetic samples generated by conditional generative adversarial networks (CGAN) models. Though many studies utilizing GANs have seen extraordinary success in producing realistic image samples, these studies generally assume the use of well-processed and balanced benchmark image datasets, including MNIST and CIFAR-10. However, well-balanced data is uncommon in real world applications such as detecting fraud, diagnosing diabetes, and predicting solar flares. It is well known that when class labels are not distributed uniformly, the predictive ability of classification algorithms suffers significantly, a phenomenon known as the "class-imbalance problem." We show that the imbalance in the training set can also impact sample generation of CGAN models. We utilize the well known MNIST datasets, controlling the imbalance ratio of certain classes within the data through sampling. We are able to show that both the quality and diversity of generated samples suffer in the presence of class imbalances and propose a novel framework named Two-stage CGAN to produce high-quality synthetic samples in such cases. Our results indicate that the proposed framework provides a significant improvement over typical oversampling and undersampling techniques utilized for class imbalance remediation. 
    more » « less
    Free, publicly-accessible full text available September 14, 2024