skip to main content


Search for: All records

Creators/Authors contains: "Kenig, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let u u be a nontrivial harmonic function in a domain D ⊂ R d D\subset {{\mathbb{R}}}^{d} , which vanishes on an open set of the boundary. In a recent article, we showed that if D D is a C 1 {C}^{1} -Dini domain, then, within the open set, the singular set of u u , defined as { X ∈ D ¯ : u ( X ) = 0 = ∣ ∇ u ( X ) ∣ } \left\{X\in \overline{D}:u\left(X)=0=| \nabla u\left(X)| \right\} , has finite ( d − 2 ) \left(d-2) -dimensional Hausdorff measure. In this article, we show that the assumption of C 1 {C}^{1} -Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose singular sets have infinite ℋ d − 2 {{\mathcal{ {\mathcal H} }}}^{d-2} -measures. 
    more » « less
  2. Abstract In this article, we investigate the quantitative unique continuation properties of complex-valued solutions to drift equations in the plane.We consider equations of the form Δ ⁢ u + W ⋅ ∇ ⁡ u = 0 {\Delta u+W\cdot\nabla u=0} in ℝ 2 {\mathbb{R}^{2}} ,where W = W 1 + i ⁢ W 2 {W=W_{1}+iW_{2}} with each W j {W_{j}} being real-valued.Under the assumptions that W j ∈ L q j {W_{j}\in L^{q_{j}}} for some q 1 ∈ [ 2 , ∞ ] {q_{1}\in[2,\infty]} , q 2 ∈ ( 2 , ∞ ] {q_{2}\in(2,\infty]} and that W 2 {W_{2}} exhibits rapid decay at infinity,we prove new global unique continuation estimates.This improvement is accomplished by reducing our equations to vector-valued Beltrami systems.Our results rely on a novel order of vanishing estimate combined with a finite iteration scheme. 
    more » « less
  3. null (Ed.)
  4. Abstract

    We consider the focusing energy-critical quintic nonlinear wave equation in 3D Euclidean space. It is known that this equation admits a one-parameter family of radial stationary solutions, called solitons, which can be viewed as a curve in $ \dot H^s_x({{\mathbb{R}}}^3) \times H^{s-1}_x({{\mathbb{R}}}^3)$, for any $s> 1/2$. By randomizing radial initial data in $ \dot H^s_x({{\mathbb{R}}}^3) \times H^{s-1}_x({{\mathbb{R}}}^3)$ for $s> 5/6$, which also satisfy a certain weighted Sobolev condition, we produce with high probability a family of radial perturbations of the soliton that give rise to global forward-in-time solutions of the focusing nonlinear wave equation that scatter after subtracting a dynamically modulated soliton. Our proof relies on a new randomization procedure using distorted Fourier projections associated to the linearized operator around a fixed soliton. To our knowledge, this is the 1st long-time random data existence result for a focusing wave or dispersive equation on Euclidean space outside the small data regime.

     
    more » « less