Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Let u u be a nontrivial harmonic function in a domain D ⊂ R d D\subset {{\mathbb{R}}}^{d} , which vanishes on an open set of the boundary. In a recent article, we showed that if D D is a C 1 {C}^{1} -Dini domain, then, within the open set, the singular set of u u , defined as { X ∈ D ¯ : u ( X ) = 0 = ∣ ∇ u ( X ) ∣ } \left\{X\in \overline{D}:u\left(X)=0=| \nabla u\left(X)| \right\} , has finite ( d − 2 ) \left(d-2) -dimensional Hausdorff measure. In this article, we show that the assumption of C 1 {C}^{1} -Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose singular sets have infinite ℋ d − 2 {{\mathcal{ {\mathcal H} }}}^{d-2} -measures.more » « less
- 
            Abstract In this article, we investigate the quantitative unique continuation properties of complex-valued solutions to drift equations in the plane.We consider equations of the form Δ  u + W ⋅ ∇  u = 0 {\Delta u+W\cdot\nabla u=0} in ℝ 2 {\mathbb{R}^{2}} ,where W = W 1 + i  W 2 {W=W_{1}+iW_{2}} with each W j {W_{j}} being real-valued.Under the assumptions that W j ∈ L q j {W_{j}\in L^{q_{j}}} for some q 1 ∈ [ 2 , ∞ ] {q_{1}\in[2,\infty]} , q 2 ∈ ( 2 , ∞ ] {q_{2}\in(2,\infty]} and that W 2 {W_{2}} exhibits rapid decay at infinity,we prove new global unique continuation estimates.This improvement is accomplished by reducing our equations to vector-valued Beltrami systems.Our results rely on a novel order of vanishing estimate combined with a finite iteration scheme.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
