skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kenkel, Carly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coral bleaching events from thermal stress are increasing globally in duration, frequency, and intensity. While bleaching can cause mortality, some corals survive, reacquire symbionts, and recover. We experimentally bleachedMontipora capitatato examine molecular and physiological differences between corals that recover (resilient) and those that die (susceptible). Corals were collected and monitored for eight months post-bleaching to identify genets with long-term resilience. Using an integrated systems-biology approach that included quantitative proteomics, 16S rRNA sequencing to characterize the coral microbiome, total coral lipids, symbiont community composition and density, we explored molecular-level mechanisms of tolerance in corals pre- and post-bleaching. Prior to thermal stress, resilient corals have a more diverse microbiome and abundant proteins essential for carbon acquisition, symbiont retention, and pathogen resistance. Protein signatures of susceptible corals showed early symbiont rejection and utilized urea for carbon and nitrogen. Our results reveal molecular factors for surviving bleaching events and identify diagnostic protein biomarkers for reef management and restoration. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available March 7, 2026
  3. As environments are rapidly reshaped due to climate change, phenotypic plasticity plays an important role in the ability of organisms to persist and is considered an especially important acclimatization mechanism for long-lived sessile organisms such as reef-building corals. Often, this ability of a single genotype to display multiple phenotypes depending on the environment is modulated by changes in gene expression, which can vary in response to environmental changes via two mechanisms: baseline expression and expression plasticity. We used transcriptome-wide expression profiling of eleven genotypes of common-gardenedAcropora cervicornisto explore genotypic variation in the expression response to thermal and acidification stress, both individually and in combination. We show that the combination of these two stressors elicits a synergistic gene expression response, and that both baseline expression and expression plasticity in response to stress show genotypic variation. Additionally, we demonstrate that frontloading of a large module of coexpressed genes is associated with greater retention of algal symbionts under combined stress. These results illustrate that variation in the gene expression response of individuals to climate change stressors can persist even when individuals have shared environmental histories, affecting their performance under future climate change scenarios. 
    more » « less
  4. Once one of the predominant reef-building corals in the region,Acropora cervicornisis now a focal species of coral restoration efforts in Florida and the western Caribbean. Scientists and restoration practitioners have been independently collecting phenotypic data on genets ofA. cervicornisgrown in restoration nurseries. While these data are important for understanding the intraspecific response to varying environmental conditions, and thus the potential genetic contribution to phenotypic variation, in isolation these observations are of limited use for large-scale, multi- institution restoration efforts that are becoming increasingly necessary. Here, we present theAcropora cervicornisData Coordination Hub, a web-accessible relational database to align disparate datasets to compare genet-specific performance. In this data descriptor, we release data for 248 genets evaluated across 38 separate traits. We present a framework to align datasets with the ultimate goal of facilitating informed, data-driven restoration throughout the Caribbean. 
    more » « less
  5. null (Ed.)
    Knowledge of multi-stressor interactions and the potential for tradeoffs among tolerance traits is essential for developing intervention strategies for the conservation and restoration of reef ecosystems in a changing climate. Thermal extremes and acidification are two major co-occurring stresses predicted to limit the recovery of vital Caribbean reef-building corals. Here, we conducted an aquarium-based experiment to quantify the effects of increased water temperatures and p CO 2 individually and in concert on 12 genotypes of the endangered branching coral Acropora cervicornis, currently being reared and outplanted for large-scale coral restoration. Quantification of 12 host, symbiont and holobiont traits throughout the two-month-long experiment showed several synergistic negative effects, where the combined stress treatment often caused a greater reduction in physiological function than the individual stressors alone. However, we found significant genetic variation for most traits and positive trait correlations among treatments indicating an apparent lack of tradeoffs, suggesting that adaptive evolution will not be constrained. Our results suggest that it may be possible to incorporate climate-resistant coral genotypes into restoration and selective breeding programmes, potentially accelerating adaptation. 
    more » « less
  6. The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose–response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in F v /F m ED50), with highly reproducible rankings across independent tests ( r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide. 
    more » « less
  7. null (Ed.)
  8. Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses. 
    more » « less
  9. null (Ed.)