skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kennedy, Ellis R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Serpentine minerals have received a lot of attention because of their unique crystal structures, their wide occurrence in orogenic belts and their potential role in contributing seismic anisotropy in subducting slabs. Several studies have investigated crystal preferred orientation (CPO) in high temperature antigorite serpentinites from Japan, the Alps, Spain, Cuba and Tibet, documenting significant crystal alignment. However, only a limited number of lower grade serpentines have been explored to date. Mainly because of submicroscopic microstructural heterogeneities CPO cannot be measured with conventional methods such as optical microscopy and EBSD. In this study 15 serpentinites from different tectonic settings in California, the Central Alps and Northern Spain have been investigated, mainly with high energy synchrotron X-ray diffraction, to quantify bulk crystal alignment. We find that CPO is strong on sheared surfaces of fractured blocks and secondary veins but the bulk of most serpentinite samples, except high-grade recrystallized antigorite serpentinite, show only weak crystal alignment. Correspondingly calculated seismic anisotropy based on CPO is not very significant. This is supported by very heterogeneous microstructures as documented with SEM and TEM analyses. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4f1systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+electronic state to a typical Pr3+state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone. 
    more » « less
  3. Abstract The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,Ibam). Our findings show thato-Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearTsp= 32 K, with a spin reconfiguration transition nearTM= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofTspandTM. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexfstate magnetism with potential strongly correlated electron states. 
    more » « less