skip to main content

Search for: All records

Creators/Authors contains: "Kent, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2023
  2. Free, publicly-accessible full text available February 21, 2023
  3. Free, publicly-accessible full text available February 21, 2023
  4. Abstract

    We have used X-ray data from the Neutron Star Interior Composition Explorer (NICER) to search for long-timescale temporal correlations (“red noise”) in the pulse times of arrival (TOAs) from the millisecond pulsars PSR J1824−2452A and PSR B1937+21. These data more closely track intrinsic noise because X-rays are unaffected by the radio-frequency-dependent propagation effects of the interstellar medium. Our search yields strong evidence (natural log Bayes factor of 9.634 ± 0.016) for red noise in PSR J1824−2452A, but the search is inconclusive for PSR B1937+21. In the interest of future X-ray missions, we devise and implement a method to simulate longer and higher-precision X-ray data sets to determine the timing baseline necessary to detect red noise. We find that the red noise in PSR B1937+21 can be reliably detected in a 5 yr mission with a TOA error of 2μs and an observing cadence of 20 observations per month compared to the 5μs TOA error and 11 observations per month that NICER currently achieves in PSR B1937+21. We investigate detecting red noise in PSR B1937+21 with other combinations of observing cadences and TOA errors. We also find that time-correlated red noise commensurate with an injected stochastic gravitational-wave background having anmore »amplitude ofAGWB= 2 × 10−15and spectral index of timing residuals ofγGWB= 13/3 can be detected in a pulsar with similar TOA precision to PSR B1937+21. This is with no additional red noise in a 10 yr mission that observes the pulsar 15 times per month and has an average TOA error of 1μs.

    « less
  5. Abstract We present a search for outer solar system objects in the 6 yr of data from the Dark Energy Survey (DES). The DES covered a contiguous 5000 deg 2 of the southern sky with ≈80,000 3 deg 2 exposures in the grizY filters between 2013 and 2019. This search yielded 812 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, 458 reported here for the first time. We present methodology that builds upon our previous search on the first 4 yr of data. All images were reprocessed with an optimized detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as improved transient catalog production and algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by the “sub-threshold significance,” the signal-to-noise ratio in the stack of images in which its presence is indicated by the orbit, but no detection was reported. This yields a pure catalog complete to r ≈ 23.8 mag and distances 29 < d < 2500 au. The TNOs have minimum (median) of 7 (12) nights’ detections and arcs of 1.1 (4.2) yr, and will have grizY magnitudes available in a further publication.more »We present software for simulating our observational biases for comparisons of models to our detections. Initial inferences demonstrating the catalog’s statistical power are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 “extreme” TNOs ( a > 150 au, q > 30 au) are consistent with the null hypothesis of azimuthal isotropy; and nonresonant TNOs with q > 38 au, a > 50 au show a significant tendency to be sunward of major mean-motion resonances.« less
    Free, publicly-accessible full text available February 1, 2023
  6. Abstract We describe an updated calibration and diagnostic framework, Balrog , used to directly sample the selection and photometric biases of the Dark Energy Survey (DES) Year 3 (Y3) data set. We systematically inject onto the single-epoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the original data to automatically inherit measurement systematics that are often too difficult to capture with generative models. The resulting object catalog is a Monte Carlo sampling of the DES transfer function and is used as a powerful diagnostic and calibration tool for a variety of DES Y3 science, particularly for the calibration of the photometric redshifts of distant “source” galaxies and magnification biases of nearer “lens” galaxies. The recovered Balrog injections are shown to closely match the photometric property distributions of the Y3 GOLD catalog, particularly in color, and capture the number density fluctuations from observing conditions of the real data within 1% for a typical galaxy sample. We find that Y3 colors are extremely well calibrated, typically within ∼1–8 mmag, but for a small subset of objects, wemore »detect significant magnitude biases correlated with large overestimates of the injected object size due to proximity effects and blending. We discuss approaches to extend the current methodology to capture more aspects of the transfer function and reach full coverage of the survey footprint for future analyses.« less
    Free, publicly-accessible full text available January 1, 2023