Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Previous work has argued that atomic gas mass estimates of galaxies from 21-cm H i emission are systematically low due to a cold opaque atomic gas component. If true, this opaque component necessitates a $\sim 35{{\ \rm per\ cent}}$ correction factor relative to the mass from assuming optically thin H i emission. These mass corrections are based on fitting H i spectra with a single opaque component model that produces a distinct ‘top-hat’ shaped line profile. Here, we investigate this issue using deep, high spectral resolution H i VLA observations of M31 and M33 to test if these top-hat profiles are instead superpositions of multiple H i components along the line of sight. We fit both models and find that ${\gt}80{{\ \rm per\ cent}}$ of the spectra strongly prefer a multicomponent Gaussian model while ${\lt}2{{\ \rm per\ cent}}$ prefer the single opacity-corrected component model. This strong preference for multiple components argues against previous findings of lines of sight dominated by only cold H i. Our findings are enabled by the improved spectral resolution (0.42 ${\rm km\, s^{-1}}$), whereas coarser spectral resolution blends multiple components together. We also show that the inferred opaque atomic ISM mass strongly depends on the goodness-of-fit definition and is highly uncertain whenmore »
-
Abstract We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby ( d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimationmore »