The temperature dependence of amorphization in a high-entropy pyrochlore, (Yb0.2Tm0.2Lu0.2Ho0.2Er0.2)2Ti2O7, under irradiation with 600 keV Xe ions has been studied using in situ transmission electron microscopy (TEM). The critical amorphization dose increases with temperature, and the critical temperature for amorphization is 800 K. At room temperature, the critical amorphization dose is larger than that previously determined for this pyrochlore under bulk-like 4 MeV Au ion irradiation but is similar to the critical doses determined in two other high-entropy titanate pyrochlores under 800 keV Kr ion irradiation using in situ TEM, which is consistent with reported behavior in simple rare-earth titanate pyrochlores.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Graphical abstract -
The high-entropy concept was applied to synthesize a set of rare-earth perovskites REBO3 (RE = La, Pr, Nd, Sm, Eu, Gd) with the B-site occupied by Sc, Al, Cr, Ni, and Fe in equimolar ratios. All samples crystallize in the orthorhombic Pnma space group. Using an extended set of characterization measurements, the effects of multi-component material design and rare-earth selection on the electronic properties are explored. Transport measurements show semiconducting behavior. PrBO3, SmBO3, and LaBO3 show low-temperature magnetic ordering, with the ordering temperature shifting with the moment on the A-site.
Free, publicly-accessible full text available May 20, 2025 -
We present an exploration of a family of compositionally complex cubic spinel ferrites featuring combinations of Mg, Fe, Co, Ni, Cu, Mn, and Zn cations, systematically investigating the average and local atomic structures, chemical short-range order, magnetic spin configurations, and magnetic properties. All compositions result in ferrimagnetic average structures with extremely similar local bonding environments; however, the samples display varying degrees of cation inversion and, therefore, differing apparent bulk magnetization. Additionally, first-order reversal curve analysis of the magnetic reversal behavior indicates varying degrees of magnetic ordering and interactions, including potentially local frustration. Finally, reverse Monte Carlo modeling of the spin orientation demonstrates a relationship between the degree of cation inversion and the spin collinearity. Collectively, these observations correlate with differences in synthesis procedures. This work provides a framework for understanding magnetic behavior reported for “high-entropy spinels,” revealing many are likely compositionally complex oxides with differing degrees of chemical short-range order—not meeting the community established criteria for high or medium entropy compounds. Moreover, this work highlights the importance of reporting complete sample processing histories and investigating local to long-range atomic arrangements when evaluating potential entropic mixing effects and assumed property correlations in high entropy materials.more » « less
-
High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields, which can result in miscommunication of important aspects of research. In this Perspective, we provide examples of research and characterization taken from these different fields to provide a framework for classifying the differences between compositionally complex oxides, high entropy oxides, and entropy stabilized oxides, which is intended to bring a common language to this emerging area. We highlight the critical importance of understanding a material’s crystallinity, composition, and mixing length scales in determining its true definition.more » « less
-
Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young’s, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation–dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy.more » « less