skip to main content

Search for: All records

Creators/Authors contains: "Kessler, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The unknown cause of the correlation between Type Ia supernova (SN Ia) Hubble residuals and their host-galaxy masses (the “mass step”) may bias cosmological parameter measurements. To better understand the mass step, we develop a SALT3 light-curve model for SN cosmology that uses the host-galaxy masses of 296 low-redshift SNe Ia to derive a spectral energy distribution–host-galaxy mass relationship. The resulting model has larger CaiiH and K, Caiinear-infrared triplet, and Siiiequivalent widths for SNe in low-mass host galaxies at 2.2–2.7σsignificance; this indicates higher explosion energies per unit mass in low-mass-hosted SNe. The model has phase-dependent changes in SN Ia colors as a function of host mass, indicating intrinsic differences in mean broadband light curves. Although the model provides a better fit to the SN data overall, it does not substantially reduce data–model residuals for a typical light curve in our sample nor does it significantly reduce Hubble residual dispersion. This is because we find that previous SALT models parameterized most host-galaxy dependencies with their first principal component, although they failed to model some significant spectral variations. Our new model is luminosity and cosmology independent, and applying it to data reduces the mass step by 0.021 ± 0.002 mag (uncertainty accounts for correlated data sets); these results indicate that ∼35% of the mass step can be attributed to luminosity-independent effects. This SALT model version could be trained using alternative host-galaxy properties and at different redshifts, and therefore will be a tool for understanding redshift-dependent correlations between SNe Ia and their host properties as well as their impact on cosmological parameter measurements.

    more » « less

    For the past decade, SALT2 has been the most common model used to fit Type Ia supernova (SN Ia) light curves for dark energy analyses. Recently, the SALT3 model was released, which upgraded a number of model features but has not yet been used for measurements of dark energy. Here, we evaluate the impact of switching from SALT2 to SALT3 for a SN cosmology analysis. We train SALT2 and SALT3 on an identical training sample of 1083 well-calibrated Type Ia supernovae, ensuring that any differences found come from the underlying model framework. We publicly release the results of this training (the SALT ‘surfaces’). We then run a cosmology analysis on the public Dark Energy Survey 3-Yr Supernova data sample (DES-SN3YR), and on realistic simulations of those data. We provide the first estimate of the SN + CMB systematic uncertainty arising from the choice of SALT model framework (i.e. SALT2 versus SALT3), Δw  = + 0.001 ± 0.005 – a negligible effect at the current level of dark energy analyses. We also find that the updated surfaces are less sensitive to photometric calibration uncertainties than previous SALT2 surfaces, with the average spectral energy density dispersion reduced by a factor of two over optical wavelengths. This offers an opportunity to reduce the contribution of calibration errors to SN cosmology uncertainty budgets.

    more » « less
  3. Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is non-trivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5-Year (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift difference between the true and matched host of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Dw) due to including SNe with incorrect host galaxy matches. For SN Ia-only simulations, we find Dw = 0.0013 +/- 0.0026 with constraints from the cosmic microwave background (CMB). Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Dw ranges from 0.0009 to 0.0032 depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of around 0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. null (Ed.)
  5. null (Ed.)

    Recent analyses have found intriguing correlations between the colour (c) of type Ia supernovae (SNe Ia) and the size of their ‘mass-step’, the relationship between SN Ia host galaxy stellar mass (Mstellar) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically classified SNe Ia from the Dark Energy Survey 5-yr sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a 3σ difference in the mass-step when comparing blue (c < 0) and red (c > 0) SNe. We observe the lowest r.m.s. scatter (∼0.14 mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for c-dependent relationships between Hubble residuals and Mstellar, approximating existing dust models, we remove the mass-step from the data and find tentative ∼2σ residual steps in rest-frame galaxy U − R colour. This indicates that dust modelling based on Mstellar may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a c-dependent relationship between Hubble residuals and global U − R, results in ≤1σ residual steps in Mstellar and local U − R, suggesting that U − R provides different information about the environment of SNe Ia compared to Mstellar, and motivating the inclusion of galaxy U − R colour in SN Ia distance bias correction.

    more » « less
  7. Abstract

    A large fraction of Type Ia supernova (SN Ia) observations over the next decade will be in the near-infrared (NIR), at wavelengths beyond the reach of the current standard light-curve model for SN Ia cosmology, SALT3 (∼2800–8700 Å central filter wavelength). To harness this new SN Ia sample and reduce future light-curve standardization systematic uncertainties, we train SALT3 at NIR wavelengths (SALT3-NIR) up to 2μm with the open-source model-training softwareSALTshaker, which can easily accommodate future observations. Using simulated data, we show that the training process constrains the NIR model to ∼2%–3% across the phase range (−20 to 50 days). We find that Hubble residual (HR) scatter is smaller using the NIR alone or optical+NIR compared to optical alone, by up to ∼30% depending on filter choice (95% confidence). There is significant correlation between NIR light-curve stretch measurements and luminosity, with stretch and color corrections often improving HR scatter by up to ∼20%. For SN Ia observations expected from the Roman Space Telescope, SALT3-NIR increases the amount of usable data in the SALT framework by ∼20% at redshiftz≲ 0.4 and by ∼50% atz≲ 0.15. The SALT3-NIR model is part of the open-sourceSNCosmoandSNANASN Ia cosmology packages.

    more » « less
  8. Abstract

    Wavelength-dependent atmospheric effects impact photometric supernova flux measurements for ground-based observations. We present corrections on supernova flux measurements from the Dark Energy Survey Supernova Program’s 5YR sample (DES-SN5YR) for differential chromatic refraction (DCR) and wavelength-dependent seeing, and we show their impact on the cosmological parameterswand Ωm. We usegicolors of Type Ia supernovae to quantify astrometric offsets caused by DCR and simulate point-spread functions (PSFs) using the GalSIM package to predict the shapes of the PSFs with DCR and wavelength-dependent seeing. We calculate the magnitude corrections and apply them to the magnitudes computed by the DES-SN5YR photometric pipeline. We find that for the DES-SN5YR analysis, not accounting for the astrometric offsets and changes in the PSF shape cause an average bias of +0.2 mmag and −0.3 mmag, respectively, with standard deviations of 0.7 mmag and 2.7 mmag across all DES observing bands (griz) throughout all redshifts. When the DCR and seeing effects are not accounted for, we find thatwand Ωmare lower by less than 0.004 ± 0.02 and 0.001 ± 0.01, respectively, with 0.02 and 0.01 being the 1σstatistical uncertainties. Although we find that these biases do not limit the constraints of the DES-SN5YR sample, future surveys with much higher statistics, lower systematics, and especially those that observe in theuband will require these corrections as wavelength-dependent atmospheric effects are larger at shorter wavelengths. We also discuss limitations of our method and how they can be better accounted for in future surveys.

    more » « less
  9. ABSTRACT As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time. 
    more » « less
  10. Abstract

    Current and future cosmological analyses with Type Ia supernovae (SNe Ia) face three critical challenges: (i) measuring the redshifts from the SNe or their host galaxies; (ii) classifying the SNe without spectra; and (iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each of these challenges. In the context of the Dark Energy Survey (DES), we analyze an SN Ia sample with host galaxies in the redMaGiC galaxy catalog, a selection of luminous red galaxies. redMaGiC photo-zestimates are expected to be accurate toσΔz/(1+z)∼ 0.02. The DES-5YR photometrically classified SN Ia sample contains approximately 1600 SNe, and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns relating to classification uncertainties. With this subsample, we find similar Hubble scatter (to within ∼0.01 mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show that the bias due to using redMaGiC photo-zs on the measurement of the dark energy equation of statewis up to Δw∼ 0.01–0.02. With real data, we measure a difference inwwhen using the redMaGiC photo-zs versus the spec-zs of Δw= 0.005. Finally, we discuss how SNe in redMaGiC galaxies appear to comprise a more standardizable population, due to a weaker relation between color and luminosity (β) compared to the DES-3YR population by ∼5σ. These results establish the feasibility of performing redMaGiC SN cosmology with photometric survey data in the absence of spectroscopic data.

    more » « less