Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $2{,}298$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract The unknown cause of the correlation between Type Ia supernova (SN Ia) Hubble residuals and their host-galaxy masses (the “mass step”) may bias cosmological parameter measurements. To better understand the mass step, we develop a SALT3 light-curve model for SN cosmology that uses the host-galaxy masses of 296 low-redshift SNe Ia to derive a spectral energy distribution–host-galaxy mass relationship. The resulting model has larger Ca
ii H and K, Caii near-infrared triplet, and Siii equivalent widths for SNe in low-mass host galaxies at 2.2–2.7σ significance; this indicates higher explosion energies per unit mass in low-mass-hosted SNe. The model has phase-dependent changes in SN Ia colors as a function of host mass, indicating intrinsic differences in mean broadband light curves. Although the model provides a better fit to the SN data overall, it does not substantially reduce data–model residuals for a typical light curve in our sample nor does it significantly reduce Hubble residual dispersion. This is because we find that previous SALT models parameterized most host-galaxy dependencies with their first principal component, although they failed to model some significant spectral variations. Our new model is luminosity and cosmology independent, and applying it to data reduces the mass step by 0.021 ± 0.002 mag (uncertainty accounts for correlated data sets); these results indicate that ∼35% of the mass step can be attributed to luminosity-independent effects. This SALT model version could be trained using alternative host-galaxy properties and at different redshifts, and therefore will be a tool for understanding redshift-dependent correlations between SNe Ia and their host properties as well as their impact on cosmological parameter measurements. -
ABSTRACT For the past decade, SALT2 has been the most common model used to fit Type Ia supernova (SN Ia) light curves for dark energy analyses. Recently, the SALT3 model was released, which upgraded a number of model features but has not yet been used for measurements of dark energy. Here, we evaluate the impact of switching from SALT2 to SALT3 for a SN cosmology analysis. We train SALT2 and SALT3 on an identical training sample of 1083 well-calibrated Type Ia supernovae, ensuring that any differences found come from the underlying model framework. We publicly release the results of this training (the SALT ‘surfaces’). We then run a cosmology analysis on the public Dark Energy Survey 3-Yr Supernova data sample (DES-SN3YR), and on realistic simulations of those data. We provide the first estimate of the SN + CMB systematic uncertainty arising from the choice of SALT model framework (i.e. SALT2 versus SALT3), Δw = + 0.001 ± 0.005 – a negligible effect at the current level of dark energy analyses. We also find that the updated surfaces are less sensitive to photometric calibration uncertainties than previous SALT2 surfaces, with the average spectral energy density dispersion reduced by a factor of two over optical wavelengths. This offers an opportunity to reduce the contribution of calibration errors to SN cosmology uncertainty budgets.
-
ABSTRACT We present a precise measurement of cosmological time dilation using the light curves of 1504 Type Ia supernovae from the Dark Energy Survey spanning a redshift range $0.1\lesssim z\lesssim 1.2$. We find that the width of supernova light curves is proportional to $(1+z)$, as expected for time dilation due to the expansion of the Universe. Assuming Type Ia supernovae light curves are emitted with a consistent duration $\Delta t_{\rm em}$, and parametrizing the observed duration as $\Delta t_{\rm obs}=\Delta t_{\rm em}(1+z)^b$, we fit for the form of time dilation using two methods. First, we find that a power of $b \approx 1$ minimizes the flux scatter in stacked subsamples of light curves across different redshifts. Secondly, we fit each target supernova to a stacked light curve (stacking all supernovae with observed bandpasses matching that of the target light curve) and find $b=1.003\pm 0.005$ (stat) $\pm \, 0.010$ (sys). Thanks to the large number of supernovae and large redshift-range of the sample, this analysis gives the most precise measurement of cosmological time dilation to date, ruling out any non-time-dilating cosmological models at very high significance.
-
Abstract Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set.
-
Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <
z < 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz > 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z < 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q 0< 0 in ΛCDM) with over 5σ confidence. We find in flatw CDM. For flatw 0w a CDM, we find , consistent with a constant equation of state to within ∼2σ . Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w ) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ . Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. -
Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δ
w ) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw = 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δw ranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onw from the DES-SN5YR sample of ∼0.03. We conclude that the bias onw from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. -
Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is non-trivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5-Year (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift difference between the true and matched host of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Dw) due to including SNe with incorrect host galaxy matches. For SN Ia-only simulations, we find Dw = 0.0013 +/- 0.0026 with constraints from the cosmic microwave background (CMB). Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Dw ranges from 0.0009 to 0.0032 depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of around 0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.more » « less