skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keten, Sinan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 28, 2026
  2. μ-Ballistic simulations performed on the PGN thin films reveal a positive influence of cohesive energy density on the performance. PGN with heavier nanoparticles arrest bullets more rapidly, however, lighter particles exhibit a higher . 
    more » « less
    Free, publicly-accessible full text available October 9, 2025
  3. Abstract Spider dragline silk is known for its exceptional strength and toughness; hence understanding the link between its primary sequence and mechanics is crucial. Here, we establish a deep-learning framework to clarify this link in dragline silk. The method utilizes sequence and mechanical property data of dragline spider silk as well as enriching descriptors such as residue-level mobility (B-factor) predictions. Our sequence representation captures the relative position, repetitiveness, as well as descriptors of amino acids that serve to physically enrich the model. We obtain high Pearson correlation coefficients (0.76–0.88) for strength, toughness, and other properties, which show that our B-factor based representation outperforms pure sequence-based models or models that use other descriptors. We prove the utility of our framework by identifying influential motifs and demonstrating how the B-factor serves to pinpoint potential mutations that improve strength and toughness, thereby establishing a validated, predictive, and interpretable sequence model for designing tailored biomaterials. 
    more » « less
    Free, publicly-accessible full text available May 25, 2025
  4. Grafting polymer chains to the surface of nanoparticles overcomes the challenge of nanoparticle dispersion within nanocomposites and establishes high-volume fractions that are found to enable enhanced material mechanical properties. This study utilizes coarse-grained molecular dynamics simulations to quantify how the shear modulus of polymer-grafted nanoparticle (PGN) systems in their glassy state depends on parameters such as strain rate, nanoparticle size, grafting density, and chain length. The results are interpreted through further analysis of the dynamics of chain conformations and volume fraction arguments. The volume fraction of nanoparticles is found to be the most influential variable in deciding the shear modulus of PGN systems. A simple rule of mixture is utilized to express the monotonic dependence of shear modulus on the volume fraction of nanoparticles. Due to the reinforcing effect of nanoparticles, shortening the grafted chains results in a higher shear modulus in PGNs, which is not seen in linear systems. These results offer timely insight into calibrating molecular design parameters for achieving the desired mechanical properties in PGNs. 
    more » « less
  5. Abstract The Kresling truss structure, derived from Kresling origami, has been widely studied for its bi-stability and various other properties that are useful for diverse engineering applications. The stable states of Kresling trusses are governed by their geometry and elastic response, which involves a limited design space that has been well explored in previous studies. In this work, we present a magneto-Kresling truss design that involves embedding nodal magnets in the structure, which results in a more complex energy landscape, and consequently, greater tunability under mechanical deformation. We explore this energy landscape first along the zero-torque folding path and then release the restraint on the path to explore the complete two-degree-of-freedom behavior for various structural geometries and magnet strengths. We show that the magnetic interaction could alter the potential energy landscape by either changing the stable configuration, adjusting the energy well depth, or both. Energy wells with different minima endow this magneto-elastic structure with an outstanding energy storage capacity. More interestingly, proper design of the magneto-Kresling truss system yields a tri-stable structure, which is not possible in the absence of magnets. We also demonstrate various loading paths that can induce desired conformational changes of the structure. The proposed magneto-Kresling truss design sets the stage for fabricating tunable, scalable magneto-elastic multi-stable systems that can be easily utilized for applications in energy harvesting, storage, vibration control, as well as active structures with shape-shifting capability. 
    more » « less