- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alvarez_Rodriguez, Maria Cristina (1)
-
Barry, Kerrie (1)
-
Bhatnagar, Jennifer M. (1)
-
Boiteau, Rene M (1)
-
Carlson, Craig A (1)
-
Conway, Tim M (1)
-
Corilo, Yuri E (1)
-
Dewey, Christian (1)
-
Eder, Elizabeth K. (1)
-
Grigoriev, Igor V. (1)
-
Kew, William R (1)
-
Kew, William R. (1)
-
Keymanesh, Keykhosrow (1)
-
Liao, Hui‐Ling (1)
-
Nicora, Carrie D. (1)
-
Tappero, Ryan (1)
-
Tejomurthula, Sravanthi (1)
-
Vilgalys, Rytas (1)
-
Wang, Haihua (1)
-
Zhang, Kaile (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Marine dissolved organic matter (DOM) contains a complex mixture of small molecules that eludes rapid biological degradation. Spatial and temporal variations in the abundance of DOM reflect the existence of fractions that are removed from the ocean over different time scales, ranging from seconds to millennia. However, it remains unknown whether the intrinsic chemical properties of these organic components relate to their persistence. Here, we elucidate and compare the molecular compositions of distinct DOM fractions with different lability along a water column in the North Atlantic Gyre. Our analysis utilized ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry at 21 T coupled to liquid chromatography and a novel data pipeline developed in CoreMS that generates molecular formula assignments and metrics of isomeric complexity. Clustering analysis binned 14 857 distinct molecular components into groups that correspond to the depth distribution of semilabile, semirefractory, and refractory fractions of DOM. The more labile fractions were concentrated near the ocean surface and contained more aliphatic, hydrophobic, and reduced molecules than the refractory fraction, which occurred uniformly throughout the water column. These findings suggest that processes that selectively remove hydrophobic compounds, such as aggregation and particle sorption, contribute to variable removal rates of marine DOM.more » « less
-
Zhang, Kaile; Wang, Haihua; Tappero, Ryan; Bhatnagar, Jennifer M.; Vilgalys, Rytas; Barry, Kerrie; Keymanesh, Keykhosrow; Tejomurthula, Sravanthi; Grigoriev, Igor V.; Kew, William R.; et al (, New Phytologist)Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.We conducted mesocosms inPinusplants inoculated with different ectomycorrhizal fungi (EMF)Suillusspecies under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.While Fe addition promotedPinusgrowth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes inPinusroots, significantly contributing toPinusgrowth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners.more » « less
An official website of the United States government
