- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Keylock, Christopher J. (2)
-
Foufoula‐Georgiou, Efi (1)
-
Ghisalberti, Marco (1)
-
Katul, Gabriel G. (1)
-
Nepf, Heidi M. (1)
-
Passalacqua, Paola (1)
-
Singh, Arvind (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Keylock, Christopher J.; Singh, Arvind; Passalacqua, Paola; Foufoula‐Georgiou, Efi (, Water Resources Research)Abstract The effective characterization of topographic surfaces is a central tenet of geomorphology. Differences in land surface properties reveal variations in structural controls and the nature and efficacy of Earth‐shaping processes. In this paper, we employ the Hölder exponents,α, characterizing the local scaling behavior of topography and commonly used in the study of the (multi)fractal properties of landscapes and show that the joint probability distribution of the area of the terrain with a given elevation andαcontains a wealth of information on topographic structure. The conditional distributions of the hypsometric integrals as a function ofα, that is,Ihyp|α, are shown to capture this structure. A multivariate analysis reveals three metrics that summarize these conditional distributions: Strahler's original hypsometric integral, the standard deviation of theIhyp|α, and the nature of any trend of theIhyp|αagainstα. An analysis of five digital elevation models (DEMs) from different regions of the United States shows that only one is truly described by the hypsometric integral (Mettman Ridge from central Oregon). In the other cases, the new metrics clearly discriminate between instances where topographic roughness is more clearly a function of elevation, as captured by the conditional variables. In a final example, we artificially sharpen the ridges and valleys of one DEM to show that while the hypsometric integral and standard deviation ofIhyp|αare invariant to the change, the trend ofIhyp|αagainstαcaptures the changes in topography.more » « less
An official website of the United States government
