Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract We report 10 fast radio bursts (FRBs) detected in the far sidelobe region (i.e., ≥5° off-meridian) of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) from August 28 2018 to August 31 2021. We localize the bursts by fitting their spectra with a model of the CHIME/FRB synthesized beam response. We find that the far sidelobe events have on average ∼500 times greater fluxes than events detected in CHIME’s main lobe. We show that the sidelobe sample is therefore statistically ∼20 times closer than the main lobe sample. We find promising host galaxy candidates (Pcc< 1%) for two of the FRBs, 20190112B and 20210310B, at distances of 38 and 16 Mpc, respectively. CHIME/FRB did not observe repetition of similar brightness from the uniform sample of 10 sidelobe FRBs in a total exposure time of 35,580 hr. Under the assumption of Poisson-distributed bursts, we infer that the mean repetition interval above the detection threshold of the far sidelobe events is longer than 11,880 hr, which is at least 2380 times larger than the interval from known CHIME/FRB detected repeating sources, with some caveats, notably that very narrowband events could have been missed. Our results from these far sidelobe events suggest one of two scenarios: either (1) all FRBs repeat and the repetition intervals span a wide range, with high-rate repeaters being a rare sub-population, or (2) non-repeating FRBs are a distinct population different from known repeaters.more » « lessFree, publicly-accessible full text available October 25, 2025
-
Abstract Localizing fast radio bursts (FRBs) to their host galaxies is an essential step to better understanding their origins and using them as cosmic probes. The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB Outriggers program aims to add very long baseline interferometry localization capabilities to CHIME, such that FRBs may be localized to tens of milliarcsecond precision at the time of their discovery, more than sufficient for host galaxy identification. The first-built outrigger telescope is theOutrigger (KKO), located 66 km west of CHIME. Cross-correlating KKO with CHIME can achieve arcsecond precision along the baseline axis while avoiding the worst effects of the ionosphere. Since the CHIME–KKO baseline is mostly east/west, this improvement is mostly in right ascension. This paper presents measurements of KKO’s performance throughout its commissioning phase, as well as a summary of its design and function. We demonstrate KKO’s capabilities as a standalone instrument by producing full-sky images, mapping the angular and frequency structure of the primary beam, and measuring feed positions. To demonstrate the localization capabilities of the CHIME–KKO baseline, we collected five separate observations each, for a set of 20 bright pulsars, and aimed to measure their positions to within 5″. All of these pulses were successfully localized to within this specification. The next two outriggers are expected to be commissioned in 2024 and will enable subarcsecond localizations for approximately hundreds of FRBs each year.more » « lessFree, publicly-accessible full text available July 24, 2025