Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Glass, Jennifer B. (Ed.)ABSTRACT Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H 2 O 2 . Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis , which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide.more » « less
-
Bacterial hopanoid lipids are ubiquitous in the geologic record and serve as biomarkers for reconstructing Earth’s climatic and biogeochemical evolution. Specifically, the abundance of 2-methylhopanoids deposited during Mesozoic ocean anoxic events (OAEs) and other intervals has been interpreted to reflect proliferation of nitrogen-fixing marine cyanobacteria. However, there currently is no conclusive evidence for 2-methylhopanoid production by extant marine cyanobacteria. As an alternative explanation, here we report 2-methylhopanoid production by bacteria of the genus
Nitrobacter , cosmopolitan nitrite oxidizers that inhabit nutrient-rich freshwater, brackish, and marine environments. The model organismNitrobacter vulgaris produced only trace amounts of 2-methylhopanoids when grown in minimal medium or with added methionine, the presumed biosynthetic methyl donor. Supplementation of cultures with cobalamin (vitamin B12) increased nitrite oxidation rates and stimulated a 33-fold increase of 2-methylhopanoid abundance, indicating that the biosynthetic reaction mechanism is cobalamin dependent. BecauseNitrobacter spp. cannot synthesize cobalamin, we postulate that they acquire it from organisms inhabiting a shared ecological niche—for example, ammonia-oxidizing archaea. We propose that during nutrient-rich conditions, cobalamin-based mutualism intensifies upper water column nitrification, thus promoting 2-methylhopanoid deposition. In contrast, anoxia underlying oligotrophic surface ocean conditions in restricted basins would prompt shoaling of anaerobic ammonium oxidation, leading to low observed 2-methylhopanoid abundances. The first scenario is consistent with hypotheses of enhanced nutrient loading during OAEs, while the second is consistent with the sedimentary record of Pliocene–Pleistocene Mediterranean sapropel events. We thus hypothesize that nitrogen cycling in the Pliocene–Pleistocene Mediterranean resembled modern, highly stratified basins, whereas no modern analog exists for OAEs. -
Abstract Hopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia‐ and nitrite‐oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia‐oxidizing (AOB), nitrite‐oxidizing (NOB), and complete ammonia‐oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen‐containing bacteriohopanepolyols were tentatively identified, of which the so called BHP‐743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in
Nitrospira spp. andNitrospina gracilis and of the Calvin–Benson–Bassham cycle for carbon fixation inNitrobacter vulgaris andNitrococcus mobilis . We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids. -
Summary Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine‐scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits ofMicrocystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity withinMicrocystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns ofMicrocystis diversity in the field and genetic evidence for cohesive groups withinMicrocystis . We then compile data on strain‐level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions acrossMicrocystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain‐level dynamics, which influence the development, toxicity and cosmopolitan nature ofMicrocystis blooms.