Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market.more » « less
-
Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market.more » « less
-
Digital health–enabled community-centered care (D-CCC) represents a pioneering vision for the future of community-centered care. D-CCC aims to support and amplify the digital footprint of community health workers through a novel artificial intelligence–enabled closed-loop digital health platform designed for, and with, community health workers. By focusing digitalization at the level of the community health worker, D-CCC enables more timely, supported, and individualized community health worker–delivered interventions. D-CCC has the potential to move community-centered care into an expanded, digitally interconnected, and collaborative community-centered health and social care ecosystem of the future, grounded within a robust and digitally empowered community health workforce.more » « less
An official website of the United States government
