Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Organic mixed ionic‐electronic conductors (OMIECs) have garnered significant attention due to their capacity to transport both ions and electrons, making them ideal for applications in energy storage, neuromorphics, and bioelectronics. However, charge compensation mechanisms during the polymer redox process remain poorly understood, and are often oversimplified as single‐ion injection with little attention to counterion effects. To advance understanding and design strategies toward next‐generation OMIEC systems, a series of p‐channel carboxylated mixed conductors is investigated. Varying side‐chain functionality, distinctive swelling character is uncovered during electrochemical doping/dedoping with model chao‐/kosmotropic electrolytes. Carboxylic acid functionalized polymers demonstrate strong deswelling and mass reduction during doping, indicating cation expulsion, while ethoxycarbonyl counterparts exhibit prominent mass increase, pointing to an anion‐driven doping mechanism. By employingoperandograzing incidence X‐ray fluorescence (GIXRF), it is revealed that the carboxyl functionalized polymer engages in robust cation interaction, whereas ester functionalization shifts the mechanism towards no cation involvement. It is demonstrated that cations are pivotal in mitigating swelling by counterbalancing anions, enabling efficient anion uptake without compromising performance. These findings underscore the transformative influence of functionality‐driven factors and side‐chain chemistry in governing ion dynamics and conduction, providing new frameworks for designing OMIECs with enhanced performance and reduced swelling.more » « less
-
Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein “particles”, the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.more » « less
-
null (Ed.)Organic electrochemical transistors (OECTs) have been revived as potentially versatile platforms for bioelectronic applications due to their high transconductance, direct ionic-electronic coupling, and unique form factors. This perceived applicability to bioelectronics can be attributed to the incorporation of organic mixed conductors that facilitate both ionic and electronic transport, enabling material-inherent translation from biological signals to abiotic readouts. In the past decade, multiple synthetic breakthroughs have yielded channel materials that exhibit significant hole/electron transport while displaying electroactivity in aqueous media. Yet, implicit in the rationale of OECTs as bioelectronic devices is they can be fabricated to be mechanically compatible with biological systems, even though unified guidelines for deformable OECTs remain unclear. In this Perspective, we highlight recent advances for imparting deformability. Specifically, materials selection, design, and chemistry for integral parts of the transistor – substrate, electrolyte, interconnects, and (polymeric) channel materials—will be discussed in the context of benchmarks set by select bioelectronics applications. We conclude by identifying key areas for future research towards mechanically compliant OECTs.more » « less