skip to main content


Search for: All records

Creators/Authors contains: "Khondaker, Saiful I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 13, 2025
  2. Abstract

    Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$RTe3(R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$GdTe3, which is antiferromagnetic below$$\sim \mathrm {12~K}$$12K, along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$Γ¯-Z¯and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$Γ¯-X¯. Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions.

     
    more » « less
  3. Abstract

    Niobium chloride (Nb3Cl8) is a layered two-dimensional semiconducting material with many exotic properties including a breathing kagome lattice, a topological flat band in its band structure, and a crystal structure that undergoes a structural and magnetic phase transition at temperatures below 90 K. Despite being a remarkable material with fascinating new physics, the understanding of its phonon properties is at its infancy. In this study, we investigate the phonon dynamics of Nb3Cl8in bulk and few layer flakes using polarized Raman spectroscopy and density-functional theory (DFT) analysis to determine the material’s vibrational modes, as well as their symmetrical representations and atomic displacements. We experimentally resolved 12 phonon modes, five of which areA1gmodes while the remaining seven areEgmodes, which is in strong agreement with our DFT calculation. Layer-dependent results suggest that the Raman peak positions are mostly insensitive to changes in layer thickness, while peak intensity and full width at half maximum are affected. Raman measurements as a function of excitation wavelength (473–785 nm) show a significant increase of the peak intensities when using a 473 nm excitation source, suggesting a near resonant condition. Temperature-dependent Raman experiments carried out above and below the transition temperature did not show any change in the symmetries of the phonon modes, suggesting that the structural phase transition is likely from the high temperatureP3mˉ1 phase to the low-temperatureR3mˉphase. Magneto-Raman measurements carried out at 140 and 2 K between −2 and 2 T show that the Raman modes are not magnetically coupled. Overall, our study presented here significantly advances the fundamental understanding of layered Nb3Cl8material which can be further exploited for future applications.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    Au‐mediated exfoliation of 2D transition‐metal dichalcogenides (TMDs) has received significant attention due to its ability to produce large‐area monolayer (ML) flakes. This process has been attributed to strong TMD/Au binding energy (BE) as well as the uniform strain between the TMDs and Au. However, large‐area exfoliation of TMDs with other metals that have even stronger theoretical BE than Au/TMD is not successful, leading to question whether the BE plays any role in the exfoliation process. Here, successful demonstration of large‐area ML MoS2using Cu, Ni, and Ag with various predicted strain, including Pd with almost no strain, but stronger BE than Au/MoS2is demonstrated. Optical micrographs show MoS2flakes with 100s of µm in size with a yield of several tens to hundreds of ML flakes per exfoliation. Photoluminescence and Raman spectroscopy confirm the ML nature of the flakes, while electrical transport measurements show mobilities of6 cm2 V−1 s−1with a current on‐off ratio108consistent with high‐quality ML MoS2. Given that MoS2can be exfoliated with metals that have strong BE irrespective of their strain values suggests that BE is the primary mechanism in successful exfoliation of large‐area ML MoS2.

     
    more » « less
  7. ABSTRACT Scalable synthesis of two-dimensional molybdenum disulfide (MoS 2 ) via chemical vapor deposition (CVD) is of considerable interests for many applications in electronics and optoelectronics. Here, we investigate the CVD growth of MoS 2 single crystals on sapphire substrates by using thermally evaporated molybdenum trioxide (MoO 3 ) thin films as molybdenum (Mo) source instead of conventionally used MoO 3 powder for co-evaporation synthesis. The MoO 3 thin film source provides uniform Mo vapor pressure in the growth chamber resulting in clean and reproducible MoS 2 triangles without any oxide or oxysulfide species. Scanning electron microscopy, Raman spectroscopy, photoluminescence spectroscopy and atomic force microscopy characterization were performed to characterize the growth results. Very high photoluminescence (PL) response was observed at 1.85 eV which is a good implication of high optical quality of these crystals directly grown on sapphire substrate. 
    more » « less