- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
01000050000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Khosravi, Ava (6)
-
Wallace, Robert M. (6)
-
Addou, Rafik (3)
-
Bolshakov, Pavel (3)
-
Hinkle, Christopher L. (3)
-
Smyth, Christopher M. (3)
-
Young, Chadwin D. (3)
-
Zhao, Peng (3)
-
Cormier, Christopher R. (2)
-
Hurley, Paul K. (2)
-
Shallenberger, Jeffrey R. (2)
-
Wang, Xinglu (2)
-
Catalano, Massimo (1)
-
Chen, Zhihong (1)
-
Ge, Wanying (1)
-
Ji, Yujin (1)
-
Kim, Moon J. (1)
-
Liu, Yuanyue (1)
-
Lo, Chun‐Li (1)
-
Mejia, Israel (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Young, Chadwin D. ; Bolshakov, Pavel ; Rodriguez-Davila, Rodolfo A. ; Zhao, Peng ; Khosravi, Ava ; Mejia, Israel ; Quevedo-Lopez, Manuel ; Hinkle, Christopher L. ; Wallace, Robert M. ( , 2018 International Conference on IC Design & Technology (ICICDT))
-
Wang, Xinglu ; Cormier, Christopher R. ; Khosravi, Ava ; Smyth, Christopher M. ; Shallenberger, Jeffrey R. ; Addou, Rafik ; Wallace, Robert M. ( , Surface Science Spectra)
-
Wang, Xinglu ; Smyth, Christopher M. ; Khosravi, Ava ; Cormier, Christopher R. ; Shallenberger, Jeffrey R. ; Addou, Rafik ; Wallace, Robert M. ( , Surface Science Spectra)
-
Bolshakov, Pavel ; Khosravi, Ava ; Zhao, Peng ; Hurley, Paul K. ; Hinkle, Christopher L. ; Wallace, Robert M. ; Young, Chadwin D. ( , Applied Physics Letters)
-
Lo, Chun‐Li ; Catalano, Massimo ; Khosravi, Ava ; Ge, Wanying ; Ji, Yujin ; Zemlyanov, Dmitry Y. ; Wang, Luhua ; Addou, Rafik ; Liu, Yuanyue ; Wallace, Robert M. ; et al ( , Advanced Materials)
Abstract The interconnect half‐pitch size will reach ≈20 nm in the coming sub‐5 nm technology node. Meanwhile, the TaN/Ta (barrier/liner) bilayer stack has to be >4 nm to ensure acceptable liner and diffusion barrier properties. Since TaN/Ta occupy a significant portion of the interconnect cross‐section and they are much more resistive than Cu, the effective conductance of an ultrascaled interconnect will be compromised by the thick bilayer. Therefore, 2D layered materials have been explored as diffusion barrier alternatives. However, many of the proposed 2D barriers are prepared at too high temperatures to be compatible with the back‐end‐of‐line (BEOL) technology. In addition, as important as the diffusion barrier properties, the liner properties of 2D materials must be evaluated, which has not yet been pursued. Here, a 2D layered tantalum sulfide (TaS
x ) with ≈1.5 nm thickness is developed to replace the conventional TaN/Ta bilayer. The TaSx ultrathin film is industry‐friendly, BEOL‐compatible, and can be directly prepared on dielectrics. The results show superior barrier/liner properties of TaSx compared to the TaN/Ta bilayer. This single‐stack material, serving as both a liner and a barrier, will enable continued scaling of interconnects beyond 5 nm node.