skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Khyzhniak, Y. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Free, publicly-accessible full text available March 1, 2024
  3. Free, publicly-accessible full text available February 1, 2024
  4. Free, publicly-accessible full text available February 1, 2024
  5. Free, publicly-accessible full text available February 1, 2024
  6. Abstract Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, divided by the number of binary nucleon–nucleon collisions, in $$\sqrt{s_{\textrm{NN}}}=200$$ s NN = 200 GeV Au+Au collisions to p + p collisions ( $$R_{\textrm{AA}}$$ R AA ), or in central to peripheral Au+Au collisions ( $$R_{\textrm{CP}}$$ R CP ). We find the bottom-decay electron $$R_{\textrm{AA}}$$ R AA and $$R_{\textrm{CP}}$$ R CP to be significantly higher than those of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions. 
    more » « less