skip to main content

Search for: All records

Creators/Authors contains: "Kidder, Lawrence E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. Abstract Detectable electromagnetic counterparts to gravitational waves from compact binary mergers can be produced by outflows from the black hole-accretion disk remnant during the first 10 s after the merger. Two-dimensional axisymmetric simulations with effective viscosity remain an efficient and informative way to model this late-time post-merger evolution. In addition to the inherent approximations of axisymmetry and modeling turbulent angular momentum transport by a viscosity, previous simulations often make other simplifications related to the treatment of the equation of state and turbulent transport effects. In this paper, we test the effect of these modeling choices. By evolving with the same viscosity the exact post-merger initial configuration previously evolved in Newtonian viscous hydrodynamics, we find that the Newtonian treatment provides a good estimate of the disk ejecta mass but underestimates the outflow velocity. We find that the inclusion of heavy nuclei causes a notable increase in ejecta mass. An approximate inclusion of r-process effects has a comparatively smaller effect, except for its designed effect on the composition. Diffusion of composition and entropy, modeling turbulent transport effects, has the overall effect of reducing ejecta mass and giving it a speed with lower average and more tightly-peaked distribution. Also, we find significant acceleration of outflow even at distances beyond 10 000 km, so that thermal wind velocities only asymptote beyond this radius and at higher values than often reported. 
    more » « less
    Free, publicly-accessible full text available March 22, 2024
  8. Abstract We present a discontinuous Galerkin (DG)–finite difference (FD) hybrid scheme that allows high-order shock capturing with the DG method for general relativistic magnetohydrodynamics. The hybrid method is conceptually quite simple. An unlimited DG candidate solution is computed for the next time step. If the candidate solution is inadmissible, the time step is retaken using robust FD methods. Because of its a posteriori nature, the hybrid scheme inherits the best properties of both methods. It is high-order with exponential convergence in smooth regions, while robustly handling discontinuities. We give a detailed description of how we transfer the solution between the DG and FD solvers, and the troubled-cell indicators necessary to robustly handle slow-moving discontinuities and simulate magnetized neutron stars. We demonstrate the efficacy of the proposed method using a suite of standard and very challenging 1D, 2D, and 3D relativistic magnetohydrodynamics test problems. The hybrid scheme is designed from the ground up to efficiently simulate astrophysical problems such as the inspiral, coalescence, and merger of two neutron stars. 
    more » « less