Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Differential privacy is the dominant standard for formal and quantifiable privacy and has been used in major deployments that impact millions of people. Many differentially private algorithms for query release and synthetic data contain steps that reconstruct answers to queries from answers to other queries that have been measured privately. Reconstruction is an important subproblem for such mecha- nisms to economize the privacy budget, minimize error on reconstructed answers, and allow for scalability to high-dimensional datasets. In this paper, we introduce a principled and efficient postprocessing method ReM (Residuals-to-Marginals) for reconstructing answers to marginal queries. Our method builds on recent work on efficient mechanisms for marginal query release, based on making measurements using a residual query basis that admits efficient pseudoinversion, which is an important primitive used in reconstruction. An extension GReM-LNN (Gaussian Residuals-to-Marginals with Local Non-negativity) reconstructs marginals under Gaussian noise satisfying consistency and non-negativity, which often reduces error on reconstructed answers. We demonstrate the utility of ReM and GReM-LNN by applying them to improve existing private query answering mechanisms.more » « lessFree, publicly-accessible full text available December 15, 2026
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Free, publicly-accessible full text available December 13, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Differential privacy is a widely accepted formal privacy definition that allows aggregate information about a dataset to be released while controlling privacy leakage for individuals whose records appear in the data. Due to the unavoidable tension between privacy and utility, there have been many works trying to relax the requirements of differential privacy to achieve greater utility.One class of relaxation, which is gaining support outside the privacy community is embodied by the definitions of individual differential privacy (IDP) and bootstrap differential privacy (BDP). Classical differential privacy defines a set of neighboring database pairs and achieves its privacy guarantees by requiring that each pair of neighbors should be nearly indistinguishable to an attacker. The privacy definitions we study, however, aggressively reduce the set of neighboring pairs that are protected.To a non-expert, IDP and BDP can seem very appealing as they echo the same types of privacy explanations that are associated with differential privacy, and also experimentally achieve dramatically better utility. However, we show that they allow a significant portion of the dataset to be reconstructed using algorithms that have arbitrarily low privacy loss under their privacy accounting rules.With the non-expert in mind, we demonstrate these attacks using the preferred mechanisms of these privacy definitions. In particular, we design a set of queries that, when protected by these mechanisms with high noise settings (i.e., with claims of very low privacy loss), yield more precise information about the dataset than if they were not protected at all. The specific attacks here can be defeated and we give examples of countermeasures. However, the defenses are either equivalent to using differential privacy or to ad-hoc methods tailored specifically to the attack (with no guarantee that they protect against other attacks). Thus, the defenses emphasize the deficiencies of these privacy definitions.more » « less
- 
            Free, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available