skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kiguchi, Takanori"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The unique nonlinear dielectric properties of antiferroelectric (AFE) oxides are promising for advancements in solid state supercapacitor, actuator, and memory technologies. AFE behavior in high‐k ZrO2is of particular technological interest, but the origin of antiferroelectricity in ZrO2remains questionable. The theory of reversible electric field‐induced phase transitions between the nonpolar P42/nmc tetragonal phase and the polarPca21orthorhombic phase is experimentally tested with local structural and electromechanical characterization of AFE ZrO2thin films. Piezoresponse force microscopy identifies signature evidence of a field‐induced phase transition. A significant size effect in AFE ZrO2is experimentally observed as film thickness is scaled down from 14.7 to 4.3 nm. The size effect is explained by modifications to the phase transition energy barrier heights ranging from 0.6 to 7.6 meV f.u−1depending on crystallite size and in‐plane compressive strain with decreasing ZrO2film thickness. Using the size effect, it is possible to double the energy storage density in ZrO2from 20 J cm−3to greater than 40 J cm−3, thus highlighting a feasible route for superior performance in AFE fluorite supercapacitors. 
    more » « less