Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the collider phenomenology of extensions of the Standard Model with partner particles, cascade decays occur generically, and they can be challenging to discover when the spectrum of new particles is compressed and the signal cross section is low. Achieving discovery-level significance and measuring the properties of the new particles appearing as intermediate states in the cascade decays is a longstanding problem, with analysis techniques for some decay topologies already optimized. We focus our attention on a benchmark decay topology with four final state particles where there is room for improvement, and where multidimensional analysis techniques have been shown to be effective in the past. Using machine learning techniques, we identify the optimal kinematic observables for discovery, spin determination and mass measurement. In agreement with past work, we confirm that the kinematic observable Δ4 is highly effective. We quantify the achievable accuracy for spin determination and for the precision for mass measurements as a function of the signal size.more » « less
-
We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces the H0 tension but does not provide any meaningful improvement of the S8 tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model, H0 can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version of CLASS that has been modified to analyze this model is publicly available at https://github.com/ManuelBuenAbad/class_spartacous.more » « less
-
Abstract We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces the
H 0tension but does not provide any meaningful improvement of theS 8tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model,H 0can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version ofCLASS that has been modified to analyze this model is publicly available athttps://github.com/ManuelBuenAbad/class_spartacous . -
A bstract We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H 0 and S 8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S 8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H 0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM.more » « less
-
We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H0 and S8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM.more » « less
-
A bstract Pixel tracklets, disappearing tracks reconstructed with only pixel hits, have proven to be a promising technique in LHC analyses to search for dark matter candidates at the LHC that belong to a nearly-degenerate electroweak multiplet. However, a Pseudo-Dirac electroweak doublet fermion, arguably the most interesting such possibility, has a shorter lifetime and therefore existing tracklet searches are less sensitive in this case. We assess the performance of a tracklet search optimized for shorter lifetimes by requiring only three pixel hits for the tracklet reconstruction, and by demanding an accompanying soft track for suppressing backgrounds. We estimate how far the sensitivity of existing searches can be extended into the region of parameter space with this optimized search.more » « less