Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2024
-
Free, publicly-accessible full text available November 1, 2023
-
Free, publicly-accessible full text available September 1, 2024
-
Free, publicly-accessible full text available September 1, 2024
-
A bstract The first measurement of the top quark pair ( $$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ ) production cross section in proton-proton collisions at $$ \sqrt{s} $$ s = 13 . 6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1 . 21 fb − 1 , are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ production cross section of 881 ± 23 (stat + syst) ± 20 (lumi) pb is measured, in agreement with the standard model prediction of $$ {924}_{-40}^{+32} $$ 924 − 40 + 32 pb.Free, publicly-accessible full text available September 1, 2024
-
A bstract A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb − 1 . The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of t -channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t -channel. The sensitivity of this analysis extends intomore »Free, publicly-accessible full text available September 1, 2024