skip to main content

Search for: All records

Creators/Authors contains: "Kilpatrick, Charles D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the complete set of Hubble Space Telescope imaging of the binary neutron star merger GW170817 and its optical counterpart AT 2017gfo. Including deep template imaging in F814W, F110W, F140W, and F160W at 3.4 yr post-merger, we reanalyze the full light curve of AT 2017gfo across 12 bands from 5 to 1273 rest-frame days after merger. We obtain four new detections of the short γ -ray burst 170817A afterglow from 109 to 170 rest-frame days post-merger. These detections are consistent with the previously observed β = −0.6 spectral index in the afterglow light curve with no evidence formore »spectral evolution. We also analyze our limits in the context of kilonova afterglow or IR dust echo emission but find that our limits are not constraining for these models. We use the new data to construct deep optical and IR stacks, reaching limits of M = −6.3 to −4.6 mag, to analyze the local environment around AT 2017gfo and low surface brightness features in its host galaxy NGC 4993. We rule out the presence of any globular cluster at the position of AT 2017gfo to 2.3 × 10 4 L ⊙ , including those with the reddest V − H colors. Finally, we analyze the substructure of NGC 4993 in deep residual imaging and find shell features that extend up to 71.″8 (14.2 kpc) from NGC 4993. The shells have a cumulative stellar mass of 6.3 × 10 8 M ⊙ , roughly 2% of NGC 4993, and mass-weighted ages of >3 Gyr. We conclude that it was unlikely that the GW170817 progenitor system formed in the galaxy merger.« less
    Free, publicly-accessible full text available February 1, 2023
  2. Free, publicly-accessible full text available September 30, 2022
  3. ABSTRACT We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 yr before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single source consistent with being the SN 2019yvr progenitor system, the second SN Ib progenitor candidate after iPTF13bvn. We also analysed pre-explosion Spitzer/Infrared Array Camera (IRAC) imaging, but we do not detect any counterparts at the SN location. SN 2019yvr was highly reddened, and comparing its spectra and photometry to those of other, less extinguished SNe Ib we derive $E(B-V)=0.51\substack{+0.27\\ -0.16}$ mag for SN 2019yvr. Correcting photometry of the pre-explosionmore »source for dust reddening, we determine that this source is consistent with a log (L/L⊙) = 5.3 ± 0.2 and $T_{\mathrm{eff}} = 6800\substack{+400\\ -200}$ K star. This relatively cool photospheric temperature implies a radius of 320$\substack{+30\\ -50}~\mathrm{ R}_{\odot}$, much larger than expectations for SN Ib progenitor stars with trace amounts of hydrogen but in agreement with previously identified SN IIb progenitor systems. The photometry of the system is also consistent with binary star models that undergo common envelope evolution, leading to a primary star hydrogen envelope mass that is mostly depleted but still seemingly in conflict with the SN Ib classification of SN 2019yvr. SN 2019yvr had signatures of strong circumstellar interaction in late-time (>150 d) spectra and imaging, and so we consider eruptive mass-loss and common envelope evolution scenarios that explain the SN Ib spectroscopic class, pre-explosion counterpart, and dense circumstellar material. We also hypothesize that the apparent inflation could be caused by a quasi-photosphere formed in an extended, low-density envelope, or circumstellar matter around the primary star.« less
  4. ABSTRACT The progenitor system of the compact binary merger GW190425 had a total mass of $3.4^{+0.3}_{-0.1}$ M⊙ (90th-percentile confidence region) as measured from its gravitational wave signal. This mass is significantly different from the Milky Way (MW) population of binary neutron stars (BNSs) that are expected to merge in a Hubble time and from that of the first BNS merger, GW170817. Here, we explore the expected electromagnetic (EM) signatures of such a system. We make several astrophysically motivated assumptions to further constrain the parameters of GW190425. By simply assuming that both components were NSs, we reduce the possible component masses significantly,more »finding $m_{1}=1.85^{+0.27}_{-0.19}$ M⊙ and $m_{2}=1.47^{+0.16}_{-0.18}$ M⊙. However, if the GW190425 progenitor system was an NS–black hole (BH) merger, we find best-fitting parameters $m_{1}=2.19^{+0.21}_{-0.17}$ M⊙ and $m_{2}=1.26^{+0.10}_{-0.08}$ M⊙. For a well-motivated BNS system where the lighter NS has a mass similar to the mass of non-recycled NSs in MW BNS systems, we find $m_{1}=2.03^{+0.15}_{-0.14}$ M⊙ and m2 = 1.35 ± 0.09 M⊙, corresponding to only 7 per cent mass uncertainties. For all scenarios, we expect a prompt collapse of the resulting remnant to a BH. Examining detailed models with component masses similar to our best-fitting results, we find the EM counterpart to GW190425 is expected to be significantly redder and fainter than that of GW170817. We find that almost all reported search observations were too shallow to detect the expected counterpart to GW190425. If the LIGO–Virgo Collaboration promptly provides the chirp mass, the astronomical community can adapt their observations to improve the likelihood of detecting a counterpart for similarly ‘high-mass’ BNS systems.« less