skip to main content

Search for: All records

Creators/Authors contains: "Kim, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The CLAS12 deep-inelastic scattering experiment at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab conjugates luminosity and wide acceptance to study the 3D nucleon structure in the yet poorly explored valence region, and to perform precision measurements in hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification in the momentum range from 3 GeV/c to 8 GeV/c, with the kaon rate about one order of magnitude lower than the rate of pions and protons. The adopted solution comprises aerogel radiator and composite mirrors in a novel hybrid optics design, where either direct or reflected light could be imaged in a high-packed and high segmented photon detector. The first RICH module was assembled during the second half of 2017 and installed at the beginning of January 2018, in time for the start of the experiment. The second RICH module, planned with the goal to be ready for the beginning of the operation with polarized targets, has been timely built despite the complications caused by the pandemic crisis and successfully installed in June 2022. The detector performance is here discussed with emphasis on the operation and stability during the data-taking, calibration and alignment procedures, reconstruction and pattern recognition algorithms, and particle identification. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available April 19, 2024
  3. Free, publicly-accessible full text available May 14, 2024

    We present a new spectroscopic study of 175 stars in the vicinity of the dwarf galaxy Hercules (d ∼ 132 kpc) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system to solve the conundrum that whether Hercules is tidally disrupting. We combine broad-band photometry, proper motions from Gaia, and our Pristine narrow-band and metallicity-sensitive photometry to efficiently weed out the Milky Way contamination. Such cleaning is particularly critical in this kinematic regime, as both the transverse and heliocentric velocities of Milky Way populations overlap with Hercules. Thanks to this method, three new member stars are identified, including one at almost 10rh of the satellite. All three have velocities and metallicities consistent with that of the main body. Combining this new data set with the entire literature cleaned out from contamination shows that Hercules does not exhibit a velocity gradient (d〈v〉/dχ $= 0.1^{+0.4}_{-0.2}$ km s−1 arcmin−1, 1.6 km s−1 arcmin−1 as a 3σ upper limit) and, as such, does not show evidence to undergo tidal disruption.

    more » « less
  5. We present results of the detailed study of several hundred Hamamatsu H12700 Multianode Photomultiplier Tubes (MaPMTs), characterizing their response to the Cherenkov light photons in the second Ring Imaging Cherenkov detector, a part of the CLAS12 upgrade at Jefferson Lab. The total number of pixels studied was 25536. The single photoelectron spectra were measured for each pixel at different high voltages and light intensities of the laser test setup. Using the same dedicated front-end electronics as in the first RICH detector, the setup allowed us to characterize each pixel’s properties such as gain, quantum efficiency, signal crosstalk between neighboring pixels, and determine the signal threshold values to optimize their efficiency to detect Cherenkov photons. A recently published state-of-the-art mathematical model, describing photon detector response functions measured in low light conditions, was extended to include the description of the crosstalk contributions to the spectra. The database of extracted parameters will be used for the final selection of the MaPMTs, their arrangement in the new RICH detector, and the optimization of the operational settings of the front-end electronics. The results show that the characteristics of the H12700 MaPMTs satisfy our requirements for the position-sensitive single photoelectron detectors. 
    more » « less

    Gaia EDR3 data were used to identify potential members in the outskirts of three ultra-faint dwarf (UFD) galaxies: Coma Berenices (>2Rh), Ursa Major I (∼4Rh), and Boötes I (∼4Rh), as well as a new member in the central region of Ursa Major I. These targets were observed with the Gemini GRACES spectrograph, which was used to determine precision radial velocities and metallicities that confirm their associations with the UFD galaxies. The spectra were also used to measure absorption lines for 10 elements (Na, Mg, K, Ca, Sc, Ti, Cr, Fe, Ni, and Ba), which confirm that the chemical abundances of the outermost stars are in good agreement with stars in the central regions. The abundance ratios and chemical patterns of the stars in Coma Berenices are consistent with contributions from SN Ia, which is unusual for its star formation history and in conflict with previous suggestions that this system evolved chemically from a single core collapse supernova event. The chemistries for all three galaxies are consistent with the outermost stars forming in the central regions, then moving to their current locations through tidal stripping and/or supernova feedback. In Boötes I, however, the lower metallicity and lack of strong carbon enrichment of its outermost stars could also be evidence of a dwarf galaxy merger.

    more » « less
  7. The Asian tiger mosquito ( Aedes albopictus ) arrived in the USA in the 1980’s and rapidly spread throughout eastern USA within a decade. The predicted northern edge of its overwintering distribution on the East Coast of the USA roughly falls across New York, Connecticut, and Massachusetts, where the species has been recorded as early as 2000. It is unclear whether Ae. albopictus populations have become established and survive the cold winters in these areas or are recolonized every year. We genotyped and analyzed populations of Ae. albopictus from the northeast USA using 15 microsatellite markers and compared them with other populations across the country and to representatives of the major global genetic clades to investigate their connectivity and stability. Founder effects or bottlenecks were rare at the northern range of the Ae. albopictus distribution in the northeastern USA, with populations displaying high levels of genetic diversity and connectivity along the East Coast. There is no evidence of population turnover in Connecticut during the course of three consecutive years, with consistent genetic structure throughout this period. Overall, these results support the presence of established populations of Ae. albopictus in New York, Connecticut, and Massachusetts, successfully overwintering and migrating in large numbers. Given the stability and interconnectedness of these populations, Ae. albopictus has the potential to continue to proliferate and expand its range northward under mean warming conditions of climate change. Efforts to control Ae. albopictus in these areas should thus focus on vector suppression rather than eradication strategies, as local populations have become firmly established and are expected to reemerge every summer. 
    more » « less