The oral cavity, a unique ecosystem harboring diverse microorganisms, maintains health through a balanced microflora. Disruption may lead to disease, emphasizing the protective role of gingival epithelial cells (GECs) in preventing harm from pathogenic oral microbes. Shifting GECs’ response from proinflammatory to antimicrobial could be a novel strategy for periodontitis. Photobiomodulation therapy (PBMT), a nonpharmacologic host modulatory approach, is considered an alternative to drugs. While the host cell response induced by a single type of pathogen-associated molecular patterns (PAMPs) was widely studied, this model does not address the cellular response to intact microbes that exhibit multiple PAMPs that might modulate the response. Inspired by this, we developed an in vitro model that simulates direct interactions between host cells and intact pathogens and evaluated the effect of PBMT on the response of human gingival keratinocytes (HGKs) to challenge viable oral microbes at both the cellular and molecular levels. Our data demonstrated that LED pretreatment on microbially challenged HGKs with specific continuous wavelengths (red: 615 nm; near-infrared: 880 nm) induced the production of various antimicrobial peptides, enhanced cell viability and proliferation, promoted reactive oxygen species scavenging, and down-modulated proinflammatory activity. The data also suggest a potential explanation regarding the superior efficacy of near-infrared light treatment compared with red light in enhancing antimicrobial activity and reducing cellular inflammation of HGKs. Taken together, the findings suggest that PBMT enhances the overall barrier function of gingival epithelium while minimizing inflammation-mediated breakdown of the underlying structures.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2025
-
ABSTRACT We present the deepest J −Ks near-infrared photometry of the globular cluster M5 (NGC 5904) from observations taken with the Gemini South Adaptive Optics Imager in tandem with the Gemini Multi-conjugate adaptive optics System (GeMS) on the 8.1-m Gemini South telescope. Point spread function (PSF) photometry was carried out using a spatially variable PSF, zero-point calibrations based on correlations to a standard photometric catalogue, colour corrections, and crowding corrections. The latter corrections provided a new challenge given the field variations of the adaptive optics corrections in the central crowded regions of this cluster. The final photometric precision in our J− Ks colour–magnitude diagram exposes a dispersion among the lower main-sequence stars of M5 for the first time. This dispersion occurs below a main-sequence knee due to variations in the helium and CNO (carbon, nitrogen, and oxygen) abundances from multiple stellar populations, consistent with results from the bright evolved stars in this cluster from ultraviolet to near-infrared Hubble Space Telescope photometry and ground-based spectroscopy. This paper completes our original GeMS quality analysis programme, providing insights into adaptive optics analyses in crowded fields.
-
Eukaryotic cells can polarize and migrate in response to electric fields via “galvanotaxis,” which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (~100) highly polarized sensors or many (~10,000) sensors with an ∼6–10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.more » « less
-
Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of
Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and humanα -synuclein), a model for Parkinson’s research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in theC. elegans reference and 99.5% of the annotatedC. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenicC. elegans genomes presented here will be a valuable resource for Parkinson’s research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains. -
The CLAS12 deep-inelastic scattering experiment at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab conjugates luminosity and wide acceptance to study the 3D nucleon structure in the yet poorly explored valence region, and to perform precision measurements in hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification in the momentum range from 3 GeV/c to 8 GeV/c, with the kaon rate about one order of magnitude lower than the rate of pions and protons. The adopted solution comprises aerogel radiator and composite mirrors in a novel hybrid optics design, where either direct or reflected light could be imaged in a high-packed and high segmented photon detector. The first RICH module was assembled during the second half of 2017 and installed at the beginning of January 2018, in time for the start of the experiment. The second RICH module, planned with the goal to be ready for the beginning of the operation with polarized targets, has been timely built despite the complications caused by the pandemic crisis and successfully installed in June 2022. The detector performance is here discussed with emphasis on the operation and stability during the data-taking, calibration and alignment procedures, reconstruction and pattern recognition algorithms, and particle identification.more » « less
-
ABSTRACT We present a new spectroscopic study of 175 stars in the vicinity of the dwarf galaxy Hercules (d ∼ 132 kpc) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system to solve the conundrum that whether Hercules is tidally disrupting. We combine broad-band photometry, proper motions from Gaia, and our Pristine narrow-band and metallicity-sensitive photometry to efficiently weed out the Milky Way contamination. Such cleaning is particularly critical in this kinematic regime, as both the transverse and heliocentric velocities of Milky Way populations overlap with Hercules. Thanks to this method, three new member stars are identified, including one at almost 10rh of the satellite. All three have velocities and metallicities consistent with that of the main body. Combining this new data set with the entire literature cleaned out from contamination shows that Hercules does not exhibit a velocity gradient (d〈v〉/dχ $= 0.1^{+0.4}_{-0.2}$ km s−1 arcmin−1, 1.6 km s−1 arcmin−1 as a 3σ upper limit) and, as such, does not show evidence to undergo tidal disruption.
-
ABSTRACT The oldest stars in the Milky Way (born in the first few billion years) are expected to have a high density in the inner few kpc, spatially overlapping with the Galactic bulge. We use spectroscopic data from the Pristine Inner Galaxy Survey (PIGS) to study the dynamical properties of ancient, metal-poor inner Galaxy stars. We compute distances using starhorse, and orbital properties in a barred Galactic potential. With this paper, we release the spectroscopic AAT/PIGS catalogue (13 235 stars). We find that most PIGS stars have orbits typical for a pressure-supported population. The fraction of stars confined to the inner Galaxy decreases with decreasing metallicity, but many very metal-poor stars (VMP; [Fe/H] <−2.0) stay confined ($\sim 60~{{\ \rm per \, cent}}$ stay within 5 kpc). The azimuthal velocity vϕ also decreases between [Fe/H] = −1.0 and −2.0, but is constant for VMP stars (at ∼+40 km s−1). The carbon-enhanced metal-poor (CEMP) stars in PIGS appear to have similar orbital properties compared to normal VMP stars. Our results suggest a possible transition between two spheroidal components – a more metal-rich, more concentrated, faster rotating component, and a more metal-poor, more extended and slower/non-rotating component. We propose that the former may be connected to pre-disc in-situ stars (or those born in large building blocks), whereas the latter may be dominated by contributions from smaller galaxies. This is an exciting era where large metal-poor samples, such as in this work (as well as upcoming surveys, e.g. 4MOST), shed light on the earliest evolution of our Galaxy.