skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Christine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein’s C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impβ as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impβ-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid. 
    more » « less
  2. Using the pollen loads carried by floral visitors to infer their floral visitation behavior is a powerful technique to explore the foraging of wild pollinators. Interpreting these pollen records, however, requires assumptions about the underlying pollen dynamics. To compare visitor foraging across flower species, the most important assumption is that pollen is picked up and retained on the visitor at similar rates. Given differences in pollen presentation traits such as grain number or stickiness even among flowers with similar morphologies, however, the generality of this assumption is unclear. We investigated pollen accumulation on the hawkmoth Manduca sexta, testing the degree to which accumulation differed among flower species and how pollen stickiness affected this accumulation. In no-choice floral visitation assays to six plant species visited by long-tongued hawkmoths in the wild, M. sexta individuals were allowed to visit flowers 1, 2, or 5 times, after which the pollen on their proboscises was removed and counted.  We found that the six plant species varied orders of magnitude in the number of pollen grains deposited on the moths, with some placing thousands of grains after a single visit and other placing none after five. Plant species with sticky pollen adhesion mechanisms placed more pollen on the moths and had relatively less pollen accumulation over successive visits than non-sticky plants. Intriguingly, moths carried fewer pollen grains after 5 visits than after 2 visits, suggesting that both sticky and non-sticky pollen was lost during foraging. Together, our results suggest that interpretation of pollen load data should be made cautiously, especially when comparing across plant species. 
    more » « less
  3. Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/β1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins. 
    more » « less