skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Heung-Sik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The magnetic properties and phase diagrams of S = 1/2 quasi-one-dimensional Heisenberg antiferromagnets are well established with copper-containing coordination polymers as the platform of choice due to their low energy scales and ease of chemical substitution. The inability to uncover orbitally resolved components of the magnetization has, however, been a longstanding barrier to greater understanding of high field spin state transitions. In this work, we combine pulsed field magnetization, optical spectroscopy, and magnetic circular dichroism with complementary electronic structure calculations to unravel orbital-specific contributions to the magnetism in the linear chain quantum magnet [CuL2(H2O)2(pyz)](ClO4)2 [L = 5-methyl-2-pyridone; pyz = pyrazine]. In addition to revealing a spin flop and field-driven transition to the fully saturated spin state, we untangle the green → teal color change across the 185 K structural phase transition and employ what we learn about the different Cu2+ → pyrazine charge transfer excitations to decompose the magnetic circular dichroism. Analysis reveals that both eg-derived Cu2+ 3d orbitals play a role in the field-driven transition to the fully saturated state, not just those formally hosting unpaired electrons. We attribute the surprisingly strong dichroic signature at room temperature to the presence of uncorrelated spin. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. Abstract We combine synchrotron-based near-field infrared spectroscopy and first principles lattice dynamics calculations to explore the vibrational response of CrPS4in bulk, few-, and single-layer form. Analysis of the mode pattern reveals aC2 polar + chiral space group, no symmetry crossover as a function of layer number, and a series of non-monotonic frequency shifts in which modes with significant intralayer character harden on approach to the ultra-thin limit whereas those containing interlayer motion or more complicated displacement patterns soften and show inflection points or steps. This is different from MnPS3where phonons shift as 1/size2and are sensitive to the three-fold rotation about the metal center that drives the symmetry crossover. We discuss these differences as well as implications for properties such as electric polarization in terms of presence or absence of the P–P dimer and other aspects of local structure, sheet density, and size of the van der Waals gap. 
    more » « less