Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non‐invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all‐in‐one, multi‐sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real‐time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor‐integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real‐time physiological levels shows the device's performance in capturing moments (400–500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kim, Hodam (3)
-
Yeo, Woon‐Hong (3)
-
Kim, Hojoong (2)
-
Lee, Yoon Jae (2)
-
Yi, Hoon (2)
-
Byun, Garan (1)
-
Cha, Ho‐Seung (1)
-
Choi, Chanyoung (1)
-
Im, Chang‐Hwan (1)
-
Ira, Soltis (1)
-
Kang, Tae_Woog (1)
-
Kim, Hyeon_Seok (1)
-
Kim, Ka_Ram (1)
-
Kim, Minseon (1)
-
Lee, Sung Hoon (1)
-
Lee, Sung_Hoon (1)
-
Lee, Yoon_Jae (1)
-
Millard‐Stafford, Melinda (1)
-
Min, Jihee (1)
-
Ready, Jud (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Kim, Hodam ; Lee, Yoon Jae ; Byun, Garan ; Choi, Chanyoung ; Yeo, Woon‐Hong ( , Advanced Electronic Materials)
Abstract Recent advances in soft sensors and flexible electronics offer various applications in detecting physical, electrical, and chemical signals. However, there are still technical barriers in current mechanical, electrical, and material properties for enhanced signal sensing. When measuring signals from the human skin, minimizing the skin‐sensor contact impedance is still challenging while maximizing sensitivity through optimized materials and soft electronics. Here, this review summarizes recent advances in materials, manufacturing, and integration technologies to develop ultrathin soft sensors for monitoring various human physiological signals. The enhancements in soft and compliant structures and mechanical properties are critical to making reliable wearable electronic systems. This article shares the details of soft sensors, integration processes, manufacturing methods, and their applications to target physical, electrical, and chemical signals. In addition, the limitations and current trends in developing multifunctional sensors, self‐powered devices, and integration with external stimuli systems are discussed.
-
Kim, Hodam ; Cha, Ho‐Seung ; Kim, Minseon ; Lee, Yoon Jae ; Yi, Hoon ; Lee, Sung Hoon ; Ira, Soltis ; Kim, Hojoong ; Im, Chang‐Hwan ; Yeo, Woon‐Hong ( , Advanced Science)
Abstract Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR‐integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all‐in‐one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real‐time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi‐channel soft wearable system offers an enhanced signal‐to‐noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR‐integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human–machine interface opportunities for users to interact remotely with external hardware and software.