skip to main content

Search for: All records

Creators/Authors contains: "Kim, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Santos, AL (Ed.)
    Peroxisomes are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), andmore »lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. In this review, we highlight the major cellular changes that accompany peroxisomal dysfunction and peroxisomal inter-organelle communication through membrane contact sites, metabolic signaling, and retrograde signaling. We also discuss the age-related decline of peroxisomal protein import and its role in animal aging and age-related diseases. Unlike other organelle stress response pathways, such as the unfolded protein response (UPR) in the ER and mitochondria, the cellular signaling pathways that mediate stress responses to malfunctioning peroxisomes have not been systematically studied and investigated. Here, we coin these signaling pathways as “peroxisomal stress response pathways”. Understanding peroxisomal stress response pathways and how peroxisomes communicate with other organelles are important and emerging areas of peroxisome research.« less
    Free, publicly-accessible full text available January 19, 2023
  2. Abstract We present Raman-scattering results for three materials, CeB 6 , TbInO 3 , and YbRu 2 Ge 2 , to illustrate the essential aspects of crystal-field (CF) excitations and quadrupolar fluctuations of 4 f -electron systems. For CF excitations, we illustrate how the 4 f orbits are split by spin-orbit coupling and CF potential by presenting spectra for inter- and intra-multiplet excitations over a large energy range. We discuss identification of the CF ground state and establishment of low-energy CF level scheme from the symmetry and energy of measured CF excitations. In addition, we demonstrate that the CF linewidthmore »is a sensitive probe of electron correlation by virtue of self-energy effect. For quadrupolar fluctuations, we discuss both ferroquadrupolar (FQ) and antiferroquadrupolar (AFQ) cases. Long-wavelength quadrupolar fluctuations of the same symmetry as the FQ order parameter persists well above the transition temperature, from which the strength of electronic intersite quadrupolar interaction can be evaluated. The tendency towards AFQ ordering induces ferromagnetic correlation between neighboring 4 f -ion sites, leading to long-wavelength magnetic fluctuations.« less
    Free, publicly-accessible full text available March 1, 2023
  3. Free, publicly-accessible full text available November 1, 2022
  4. Curvatures in mode shapes and operating deflection shapes have been extensively studied for vibration-based structural damage identification in recent decades. Curvatures of mode shapes and operating deflection shapes have proved capable of localizing and manifesting local effects of damage on mode shapes and operating deflection shapes in forms of local anomalies. The damage can be inversely identified in the neighborhoods of the anomalies that exist in the curvatures. Meanwhile, propagating flexural waves have also been extensively studied for structural damage identification and proved to be effective, thanks to their high damage-sensitivity and long range of propagation. In this work, amore »baseline-free structural damage identification method is developed for beam-like structures using curvature waveforms of propagating flexural waves. A multi-resolution local-regression temporal-spatial curvature damage index (TSCDI) is defined in a pointwise manner. A two-dimensional auxiliary TSCDI and a one-dimensional auxiliary damage index are developed to further assist the identification. Two major advantages of the proposed method are: (1) curvature waveforms of propagating flexural waves have relatively high signal-to-noise ratios due to the use of a multi-resolution central finite difference scheme, so that the local effects of the damage can be manifested, and (2) the proposed method does not require quantitative knowledge of a pristine structure associated with a structure to be examined, such as its material properties, waveforms of propagating flexural waves and boundary conditions. Numerical and experimental investigations of the proposed method are conducted on damaged beam-like structures, and the effectiveness of the proposed method is verified by the results of the investigations.« less
  5. Free, publicly-accessible full text available August 1, 2022
  6. the Endodontidae are land snails endemic to Pacific islands, and the type genus Endodonta and its 11 species are endemic to the Hawaiian Archipelago. most members of the family, because of their ground dwelling habits, are vulnerable to introduced predators and most of the species in Hawaii are already extinct. Fossil specimens have been used to describe extinct species, but no living Endodonta species have been described in more than 100 years. Over the last 15 years, the most comprehensive search for land snails in Hawaii has been carried out, with more than 1000 sites surveyed to date. the onlymore »known living Endodonta species is from the island of Nihoa, discovered in 1923, but remaining undescribed until now. Here we finally give what we think is the last Endodonta species a name and describe it using an integrative taxonomic approach. In describing this last Endodonta species, our hope is to inspire increased awareness and appreciation that facilitates and motivates conservation for this species and all the other undiscovered and unnamed species threatened with extinction. unless protection of this species is implemented, it may be extinct within the next decade and we will lose the last of a lineage that existed for millions of years, and the stories it could tell.« less