Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 10, 2025
-
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.more » « lessFree, publicly-accessible full text available July 29, 2025
-
Free, publicly-accessible full text available March 6, 2025
-
As the digital world gets increasingly ingrained in our daily lives, cyberattacks—especially those involving malware—are growing more complex and common, which calls for developing innovative safeguards. Keylogger spyware, which combines keylogging and spyware functionalities, is one of the most insidious types of cyberattacks. This malicious software stealthily monitors and records user keystrokes, amassing sensitive data, such as passwords and confidential personal information, which can then be exploited. This research introduces a novel browser extension designed to effectively thwart keylogger spyware attacks. The extension is underpinned by a cutting-edge algorithm that meticulously analyzes input-related processes, promptly identifying and flagging any malicious activities. Upon detection, the extension empowers users with the immediate choice to terminate the suspicious process or validate its authenticity, thereby placing crucial real-time control in the hands of the end user. The methodology used guarantees the extension's mobility and adaptability across various platforms and devices. This paper extensively details the development of the browser extension, from its first conceptual design to its rigorous performance evaluation. The results show that the extension considerably strengthens end-user protection against cyber risks, resulting in a safer web browsing experience. The research substantiates the extension's efficacy and significant potential in reinforcing online security standards, demonstrating its ability to make web surfing safer through extensive analysis and testing.more » « less
-
Free, publicly-accessible full text available March 25, 2025
-
Cohen, J ; Solano, G (Ed.)The integration of Computational Thinking (CT) into K-12 education has gained significance in recent years as the field of education experiences the need to equip students with essential skills for the 21st century. This case study focused on two sequencing activities, involving plugged and unplugged tasks, conducted with four children aged four to seven, spanning pre-kindergarten to second grade. The central research question guiding the study was: "What computational thinking (CT) skills were demonstrated by K-2 students as they engaged in two different sequencing tasks?" The study identified competencies in sequencing, reverse sequencing, debugging, pattern recognition, and problem decomposition. The findings suggest that both unplugged and plugged sequencing tasks provide age-appropriate entry points for young children to develop various CT competencies. Furthermore, the study highlights the potential for plugged and unplugged sequencing tasks to be integrated into early childhood classroom activities, offering a practical approach to promoting CT skills in young learners.more » « lessFree, publicly-accessible full text available March 25, 2025
-
Free, publicly-accessible full text available April 5, 2025
-
Free, publicly-accessible full text available March 8, 2025