skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Jinyoung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Proteins can form droplets via liquid–liquid phase separation (LLPS) in cells. Recent experiments demonstrate that LLPS is qualitatively different on two-dimensional (2D) surfaces compared to three-dimensional (3D) solutions. In this paper, we use mathematical modeling to investigate the causes of the discrepancies between LLPS in 2D and 3D. We model the number of proteins and droplets inducing LLPS by continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dimension, droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastic model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzing the model, we find that it predicts that the space dimension induces qualitatively different features of LLPS, which are consistent with recent experiments. While it has been claimed that the differences between 2D and 3D LLPS stem mainly from different diffusion coefficients, our analysis is independent of the diffusion coefficients of the proteins since we use the stationary model behavior. Our results thus give new hypotheses about how space dimension affects LLPS. 
    more » « less
    Free, publicly-accessible full text available November 28, 2025
  2. Abstract Bio‐enabled and bio‐mimetic nanomaterials represent functional materials, which use bio‐derived materials and synthetic components to bring the better of two, natural and synthetic, worlds. Prospective broad applications are flexibility and mechanical strength of lightweight structures, adaptive photonic functions and chiroptical activity, ambient processing and sustainability, and potential scalability along with broad sensing/communication abilities. Here, we summarize recent results on relevant functional photonic materials with responsive behavior under mechanical stresses, magnetic field, and changing chemical environment. We focus on recent achievements and trends in tuning optical materials' properties such as light scattering, absorption and reflection, light emission, structural colors, optical birefringence, linear and circular polarization for prospective applications in biosensing, optical communication, optical encoding, fast actuation, biomedical fields, and tunable optical appearance. 
    more » « less
  3. Recent years have seen a surge of interest in the community studying the effect of ultraviolet radiation environment, predominantly set by OB stars, on protoplanetary disc evolution and planet formation. This is important because a significant fraction of planetary systems, potentially including our own, formed in close proximity to OB stars. This is a rapidly developing field, with a broad range of observations across many regions recently obtained or recently scheduled. In this paper, stimulated by a series of workshops on the topic, we take stock of the current and upcoming observations. We discuss how the community can build on this recent success with future observations to make progress in answering the big questions of the field, with the broad goal of disentangling how external photoevaporation contributes to shaping the observed (exo)planet population. Both existing and future instruments offer numerous opportunities to make progress towards this goal. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  4. Abstract The Orion Nebula Cluster (ONC) hosts protoplanetary disks experiencing external photoevaporation by the cluster’s intense UV field. These “proplyds” are comprised of a disk surrounded by an ionization front. We present ALMA Band 3 (3.1 mm) continuum observations of 12 proplyds. Thermal emission from the dust disks and free–free emission from the ionization fronts are both detected, and the high-resolution (0.″057) of the observations allows us to spatially isolate these two components. The morphology is unique compared to images at shorter (sub)millimeter wavelengths, which only detect the disks, and images at longer centimeter wavelengths, which only detect the ionization fronts. The disks are small (rd= 6.4–38 au), likely due to truncation by ongoing photoevaporation. They have low spectral indices (α≲ 2.1) measured between Bands 7 and 3, suggesting the dust emission is optically thick. They harbor tens of Earth masses of dust as computed from the millimeter flux using the standard method although their true masses may be larger due to the high optical depth. We derive their photoevaporative mass-loss rates in two ways: first, by invoking ionization equilibrium and second, by using the brightness of the free–free emission to compute the density of the outflow. We find decent agreement between these measurements and M ̇ = 0.6–18.4 × 10−7Myr−1. The photoevaporation timescales are generally shorter than the ∼1 Myr age of the ONC, underscoring the known “proplyd lifetime problem.” Disk masses that are underestimated due to being optically thick remains one explanation to ease this discrepancy. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract The DAMA/LIBRA collaboration has reported the observation of an annual modulation in the event rate that has been attributed to dark matter interactions over the last two decades. However, even though tremendous efforts to detect similar dark matter interactions were pursued, no definitive evidence has been observed to corroborate the DAMA/LIBRA signal. Many studies assuming various dark matter models have attempted to reconcile DAMA/LIBRA’s modulation signals and null results from other experiments, however no clear conclusion can be drawn. Apart from the dark matter hypothesis, several studies have examined the possibility that the modulation is induced by variations in detector’s environment or their specific analysis methods. In particular, a recent study presents a possible cause of the annual modulation from an analysis method adopted by the DAMA/LIBRA experiment in which the observed annual modulation could be reproduced by a slowly varying time-dependent background. Here, we study the COSINE-100 data using an analysis method similar to the one adopted by the DAMA/LIBRA experiment and observe a significant annual modulation, however the modulation phase is almost opposite to that of the DAMA/LIBRA data. Assuming the same background composition for COSINE-100 and DAMA/LIBRA, simulated experiments for the DAMA/LIBRA without dark matter signals also provide significant annual modulation with an amplitude similar to DAMA/LIBRA with opposite phase. Even though this observation does not directly explain the DAMA/LIBRA results directly, this interesting phenomenon motivates more profound studies of the time-dependent DAMA/LIBRA background data. 
    more » « less