Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available July 17, 2026
-
Antiferromagnetic insulators present a promising alternative to ferromagnets due to their ultrafast spin dynamics essential for low-energy terahertz spintronic device applications. Magnons, i.e., quantized spin waves capable of transmitting information through excitations, serve as a key functional element in this paradigm. However, identifying external mechanisms to effectively tune magnon properties has remained a major challenge. Here we demonstrate that interfacial metal-insulator transitions offer an effective method for controlling the magnons of Sr2IrO4, a strongly spin-orbit coupled antiferromagnetic Mott insulator. Resonant inelastic x-ray scattering experiments reveal a significant softening of zone-boundary magnon energies in Sr2IrO4 films epitaxially interfaced with metallic 4d transition-metal oxides. Therefore, the magnon dispersion of Sr2IrO4 can be tuned by metal-insulator transitions of the 4d transition-metal oxides. We tentatively attribute this non-trivial behavior to a long-range phenomenon mediated by magnon-acoustic phonon interactions. Our experimental findings introduce a strategy for controlling magnons and underscore the need for further theoretical studies to better understand the underlying microscopic interactions between magnons and phonons.more » « lessFree, publicly-accessible full text available April 15, 2026
-
Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.more » « less
An official website of the United States government
