skip to main content

Search for: All records

Creators/Authors contains: "Kim, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 5, 2022
  2. OBJECTIVES: Prediction and determination of drug efficacy for radiographic progression is limited by the heterogeneity inherent in axial spondyloarthritis (axSpA). We investigated whether unbiased clustering analysis of phenotypic data can lead to coherent subgroups of axSpA patients with a distinct risk of radiographic progression. METHODS: A group of 412 patients with axSpA was clustered in an unbiased way using a agglomerative hierarchical clustering method, based on their phenotype mapping. We used a generalised linear model, naïve Bayes, Decision Trees, K-Nearest-Neighbors, and Support Vector Machines to construct a consensus classification method. Radiographic progression over 2 years was assessed using the modifiedmore »Stoke Ankylosing Spondylitis Spine Score (mSASSS). RESULTS: axSpA patients were classified into three distinct subgroups with distinct clinical characteristics. Sex, smoking, HLA-B27, baseline mSASSS, uveitis, and peripheral arthritis were the key features that were found to stratifying the phenogroups. The three phenogroups showed distinct differences in radiographic progression rate (p<0.05) and the proportion of progressors (p<0.001). Phenogroup 2, consisting of male smokers, had the worst radiographic progression, while phenogroup 3, exclusively suffering from uveitis, showed the least radiographic progression. The axSpA phenogroup classification, including its ability to stratify risk, was successfully replicated in an independent validation group. CONCLUSIONS: Phenotype mapping results in a clinically relevant classification of axSpA that is applicable for risk stratification. Novel coupling between phenotypic features and radiographic progression can provide a glimpse into the mechanisms underlying divergent and shared features of axSpA.« less
    Free, publicly-accessible full text available April 1, 2022
  3. Free, publicly-accessible full text available April 1, 2022
  4. Diatoms are major contributors to global primary production and their populations in the modern oceans are affected by availability of iron, nitrogen, phosphate, silica, and other trace metals, vitamins, and infochemicals. However, little is known about the role of phosphorylation in diatoms and its role in regulation and signaling. We report a total of 2759 phosphorylation sites on 1502 proteins detected in Phaeodactylum tricornutum. Conditionally phosphorylated peptides were detected at low iron (n = 108), during the diel cycle (n = 149), and due to nitrogen availability (n = 137). Through a multi-omic comparison of transcript, protein, phosphorylation, and proteinmore »homology, we identify numerous proteins and key cellular processes that are likely under control of phospho-regulation. We show that phosphorylation regulates: (1) carbon retrenchment and reallocation during growth under low iron, (2) carbon flux towards lipid biosynthesis after the lights turn on, (3) coordination of transcription and translation over the diel cycle and (4) in response to nitrogen depletion. We also uncover phosphorylation sites for proteins that play major roles in diatom Fe sensing and utilization, including flavodoxin and phytotransferrin (ISIP2A), as well as identify phospho-regulated stress proteins and kinases. These findings provide much needed insight into the roles of protein phosphorylation in diel cycling and nutrient sensing in diatoms.« less
  5. Abstract

    We report the identification of metastable isomeric states of$$^{228}$$228Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the$$\beta $$β-decay of$$^{228}$$228Ra, a component of the$$^{232}$$232Th decay chain, with$$\beta $$βQ-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to the low Q-value of$$^{228}$$228Ra as well as the relative abundance of$$^{232}$$232Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments.

  6. Free, publicly-accessible full text available October 1, 2022