skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Kyungtae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract Silicon photonic index sensors have received significant attention for label-free bio and gas-sensing applications, offering cost-effective and scalable solutions. Here, we introduce an ultra-compact silicon photonic refractive index sensor that leverages zero-crosstalk singularity responses enabled by subwavelength gratings. The subwavelength gratings are precisely engineered to achieve an anisotropic perturbation-led zero-crosstalk, resulting in a single transmission dip singularity in the spectrum that is independent of device length. The sensor is optimized for the transverse magnetic mode operation, where the subwavelength gratings are arranged perpendicular to the propagation direction to support a leaky-like mode and maximize the evanescent field interaction with the analyte space. Experimental results demonstrate a high wavelength sensitivity of − 410 nm/RIU and an intensity sensitivity of 395 dB/RIU, with a compact device footprint of approximately 82.8 μm2. Distinct from other resonant and interferometric sensors, our approach provides an FSR-free single-dip spectral response on a small device footprint, overcoming common challenges faced by traditional sensors, such as signal/phase ambiguity, sensitivity fading, limited detection range, and the necessity for large device footprints. This makes our sensor ideal for simplified intensity interrogation. The proposed sensor holds promise for a range of on-chip refractive index sensing applications, from gas to biochemical detection, representing a significant step towards efficient and miniaturized photonic sensing solutions. Graphical Abstract 
    more » « less
  3. Microporous two-dimensional covalent organic framework (2D COF) membranes offer promise for gas separation applications, but their gas transport mechanism remains unclear. In this study, a TpHz 2D COF membrane supported on a macroporous nylon substrate is prepared by substrate-assisted interfacial polymerization under mild conditions. The formation of a continuous and dense thin (∼300 nm thick) TpHz layer is confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. Characterization by X-ray diffraction, grazing incidence wide-angle X-ray scattering, and N2 porosimetry qualitatively reveals the microstructures of the supported TpHz membranes, i.e., they comprise partially oriented 2D COF lamellar crystallites with moderate crystallinity in an eclipsed (AA) stacking geometry, centering the effective membrane pore size distribution at ∼1.1 nm. Single gas permeation data show that the transport of common molecular gases, including H2, He, CH4, N2, and CO2, through the synthesized TpHz membranes follows the Knudsen transport mechanism, where single gas permeance decreases with an increasing molecular weight and permeation temperature. Binary gas separation results show that in the equimolar CO2/N2 mixture, the presence of the CO2 surface flow slightly hinders the N2 flow at room temperature due to the reduced membrane channel size by the adsorbed CO2 gas layer on TpHz’s pore wall. In contrast, permeation of the equimolar CH4/N2 binary mixture does not exhibit a discernible surface flow of both gases due to their much lower gas uptake on TpHz, and their transport mechanism follows Knudsen-like behavior. 
    more » « less
  4. The study reveals that a two-dimensional (2D) material as substrate for heterogeneous integration acts as a compliant substrate. 
    more » « less
    Free, publicly-accessible full text available June 13, 2025
  5. iOS is one of the most valuable targets for security researchers. Unfortunately, studying the internals of this operating system is notoriously hard, due to the closed nature of the iOS ecosystem and the absence of easily-accessible analysis tools. To address this issue, we developed TruEMU, which we present in this talk. TruEMU is the first open-source, extensible, whole-system iOS emulator. Compared to the few available alternatives, TruEMU enables complete iOS kernel emulation, including emulation of the SecureROM and the USB kernel stack. More importantly, TruEMU is completely free and open-source, and it is based on the well-known and highly extensible emulator QEMU. This talk will start by presenting the challenges and the solutions we devised to reverse engineer current iOS boot code and kernel code, and explain how to provide adequate support in QEMU. Then, to showcase TruEMU's usefulness and capabilities, we will demonstrate how it can completely boot modern iOS images, including iOS 14 and the latest iOS 15, and how it can properly run different user-space components, such as launchd, restored, etc. Later, we will showcase two promising ways to use TruEMU as an iOS vulnerability research platform. Specifically, we will demonstrate how to use TruEMU to enable coverage-based fuzzing of the iOS kernel USB stack. Further, we will show how TruEMU provides a platform to implement coverage-based, syscall-level fuzzing. This platform enables security researchers to automatically explore multiple attack surfaces of iOS. In sum, building a complete emulator for iOS is a daunting task. Many features (i.e., many peripherals) still need to be implemented to allow a complete emulation of a modern iOS device. We hope this talk will also bootstrap a large community involvement in this project that will progressively shed more light on the obscure corners of iOS security. 
    more » « less