Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, we present a preliminary investigation focused on determining cumulative fission yields for short-lived fission products. Our analysis involves examining gamma spectra from the irradiated samples of 235 U and 239 Pu using the High Flux Isotope Reactor. The motivation stems from the observed discrepancy in the antineutrino energy spectrum within the range of 5 to 7 MeV. While several hypotheses have been proposed, a thorough analysis of fission yields provides an additional way of gaining insight into this unexplained phenomenon. Our study suggests that the measured gamma rays from 100 Nb, 140 Cs and 95 Sr are consistent with the expected values. However, 93 Rb, 96 Y, 97 Y and 142 Cs cannot be quantified due to insufficient statistics, interference from other gamma rays and the Compton scattering background. Additionally, the calculated cumulative fission yields based on the measured 140 Cs and 95 Sr are found to be consistent with the JEFF3.3 fission yield library. The present work shows that the potential of improving gamma-ray spectroscopy in the fission yields as a means to improve our understanding of the antineutrino spectrum.more » « lessFree, publicly-accessible full text available February 1, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Protein self-assembly plays a vital role in a myriad of biological functions and in the construction of biomaterials. Although the physical association underlying these assemblies offers high specificity, the advantage often compromises the overall durability of protein complexes. To address this challenge, we propose a novel strategy that reinforces the molecular self-assembly of protein complexes mediated by their ligand. Known for their robust noncovalent interactions with biotin, streptavidin (SAv) tetramers are examined to understand how the ligand influences the mechanical strength of protein complexes at the nanoscale and macroscale, employing atomic force microscopy-based single-molecule force spectroscopy, rheology, and bioerosion analysis. Our study reveals that biotin binding enhances the mechanical strength of individual SAv tetramers at the nanoscale. This enhancement translates into improved shear elasticity and reduced bioerosion rates when SAv tetramers are utilized as cross-linking junctions within hydrogel. This approach, which enhances the mechanical strength of protein-based materials without compromising specificity, is expected to open new avenues for advanced biotechnological applications, including self-assembled, robust biomimetic scaffolds and soft robotics.more » « lessFree, publicly-accessible full text available January 10, 2025
-
Abstract Deep learning techniques have been increasingly applied to the natural sciences, e.g., for property prediction and optimization or material discovery. A fundamental ingredient of such approaches is the vast quantity of labeled data needed to train the model. This poses severe challenges in data-scarce settings where obtaining labels requires substantial computational or labor resources. Noting that problems in natural sciences often benefit from easily obtainable auxiliary information sources, we introduce surrogate- and invariance-boosted contrastive learning (SIB-CL), a deep learning framework which incorporates three inexpensive and easily obtainable auxiliary information sources to overcome data scarcity. Specifically, these are: abundant unlabeled data, prior knowledge of symmetries or invariances, and surrogate data obtained at near-zero cost. We demonstrate SIB-CL’s effectiveness and generality on various scientific problems, e.g., predicting the density-of-states of 2D photonic crystals and solving the 3D time-independent Schrödinger equation. SIB-CL consistently results in orders of magnitude reduction in the number of labels needed to achieve the same network accuracies.more » « less
-
β-phase gallium oxide ( β-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of β-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of β-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled β-Ga2O3 device architecture and provides guidelines to maximize the device’s thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of β-Ga2O3.more » « less
-
In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions.more » « less
-
Poor design choices, bad coding practices, or the need to produce software quickly can stand behind technical debt. Unfortunately, manually identifying and managing technical debt gets more difficult as the software matures. Recent research offers various techniques to automate the process of detecting and managing technical debt to address these challenges. This manuscript presents a mapping study of the many aspects of technical debt that have been discovered in this field of study. This includes looking at the various forms of technical debt, as well as detection methods, the financial implications, and mitigation strategies. The findings and outcomes of this study are applicable to a wide range of software development life-cycle decisions.more » « less