Interstellar neutral atoms propagating into the heliosphere experience charge exchange with the supersonic solar wind (SW) plasma, generating ions that are picked up by the SW. These pickup ions (PUIs) constitute ∼25% of the proton number density by the time they reach the heliospheric termination shock (HTS). Preferential acceleration of PUIs at the HTS leads to a suprathermal, kappa-like PUI distribution in the heliosheath, which may be further heated in the heliosheath by traveling shocks or pressure waves. In this study, we utilize a dynamic, 3D magnetohydrodynamic model of the heliosphere to show that dynamic heating of PUIs at the HTS and in the inner heliosheath (IHS), as well as a background source of energetic neutral atoms (ENAs) from outside the heliopause, can explain the heliospheric ENA signal observed by the Interstellar Boundary Explorer (IBEX) in the Voyager 2 direction. We show that the PUI heating process at the HTS is characterized by a polytropic index larger than 5/3, likely ranging between
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract γ ∼ 2.3 and 2.7, depending on the time in solar cycle 24 and SW conditions. The ENA fluxes at energies >1.5 keV show large-scale behavior in time with the solar cycle and SW dynamic pressure, whereas ENAs < 1.5 keV primarily exhibit random-like fluctuations associated with SW transients affecting the IHS. We find that ≲20% of the ENAs observed at ∼0.5–6 keV come from other sources, likely from outside the heliopause as secondary ENAs. This study offers the first model replication of the intensity and evolution of IBEX-Hi ENA observations from the outer heliosphere. -
Abstract Large-scale disturbances generated by the Sun’s dynamics first propagate through the heliosphere, influence the heliosphere’s outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space. Since Voyager 1’s entrance into the VLISM, it sampled electron plasma oscillation events that indirectly measure the medium’s density, increasing as it moves further away from the heliopause. Some of the observed electron oscillation events in the VLISM were associated with the local heliospheric shock waves. The observed VLISM shocks were very different than heliospheric shocks. They were very weak and broad, and the usual dissipation via wave-particle interactions could not explain their structure. Estimates of the dissipation associated with the collisionality show that collisions can determine the VLISM shock structure. According to theory and models, the existence of a bow shock or wave in front of our heliosphere is still an open question as there are no direct observations yet. This paper reviews the outstanding observations recently made by the Voyager 1 and 2 spacecraft, and our current understanding of the properties of shocks/waves in the VLISM. We present some of the most exciting open questions related to the VLISM and shock waves that should be addressed in the future.more » « less
-
null (Ed.)Since the launch on 2018 August 12, the Parker Solar Probe (PSP) has completed its first five orbits around the Sun, having reached down to ~28 solar radii at perihelion 5 on 2020 June 7. More recently, the Solar Orbiter (SolO) made its first close approach to the Sun at 0.52 AU on 2020 June 15, nearly 4 months after the launch. Using a 3D heliospheric MHD model coupled with the Wang-Sheeley-Arge (WSA) coronal model using the Air Force Data Assimilative Photospheric flux Transport (ADAPT) magnetic maps as input, we simulate the time-varying inner heliosphere, including the trajectories of PSP and SolO, during the current solar minimum period between 2018 and 2020. Above the ADAPT-WSA model outer boundary at 21.5 solar radii, we solve the Reynolds averaged MHD equations with turbulence and pickup ions taken into account and compare the simulation results with the PSP solar wind and magnetic field data, with particular emphasis on the large-scale solar wind structure and magnetic connectivity during each solar encounter.more » « less
-
Abstract Drawing connections between heliospheric spacecraft and solar wind sources is a vital step in understanding the evolution of the solar corona into the solar wind and contextualizing in situ timeseries. Furthermore, making advanced predictions of this linkage for ongoing heliospheric missions, such as Parker Solar Probe (Parker), is necessary for achieving useful coordinated remote observations and maximizing scientific return. The general procedure for estimating such connectivity is straightforward (i.e., magnetic field line tracing in a coronal model) but validating the resulting estimates is difficult due to the lack of an independent ground truth and limited model constraints. In its most recent orbits, Parker has reached perihelia of 13.3R⊙and moreover travels extremely fast prograde relative to the solar surface, covering over 120° longitude in 3 days. Here we present footpoint predictions and subsequent validation efforts for Parker Encounter 10, the first of the 13.3R⊙orbits, which occurred in November 2021. We show that the longitudinal dependence of in situ plasma data from these novel orbits provides a powerful method of footpoint validation. With reference to other encounters, we also illustrate that the conditions under which source mapping is most accurate for near‐ecliptic spacecraft (such as Parker) occur when solar activity is low, but also require that the heliospheric current sheet is strongly warped by mid‐latitude or equatorial coronal holes. Lastly, we comment on the large‐scale coronal structure implied by the Encounter 10 mapping, highlighting an empirical equatorial cut of the Alfvèn surface consisting of localized protrusions above unipolar magnetic separatrices.