Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Interactions between actin filaments (F-actin) and myosin are critically important for a wide range of biological processes, including cell migration, cytokinesis, and morphogenesis. The motility assay with myosin motors fixed on a surface has been utilized for understanding various phenomena emerging from the interactions between F-actin and myosin. For example, F-actin in the motility assay exhibited distinct collective behaviors when actin concentration was above a critical threshold. Recent studies have performed the myosin motility assay on a lipid bilayer, meaning that myosin motors anchored on the fluidlike membrane have mobility. Interestingly, mobile motors led to very different collective behaviors of F-actin compared to those induced by stationary motors. However, the dynamics and mechanism of the unique collective behaviors have remained elusive. In this study, we employed our cutting-edge computational model to simulate the motility assay with mobile myosin motors. We reproduced the formation of actin clusters observed in experiments and showed that F-actin within clusters exhibits strong polar ordering and leads to phase separation between myosin motors and F-actin. The cluster formation was highly dependent on the average length and concentration of F-actin. Our study provides insights into understanding the collective behaviors of F-actins that could emerge under more physiological conditions. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract BackgroundMorphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date. ResultsHere, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules – growth, shrinkage, catastrophe, and rescue – to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells. ConclusionOur modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array.more » « less