Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 9, 2025
-
Free, publicly-accessible full text available December 9, 2025
-
Ford_Versypt, A; Segal, R; Sindi, S (Ed.)
-
SN 2021adxl is a slowly evolving, luminous, Type IIn supernova with asymmetric emission line profiles, similar to the well-studied SN 2010jl. We present extensive optical, near-ultraviolet, and near-infrared photometry and spectroscopy covering ∼1.5 years post discovery. SN 2021adxl occurred in an unusual environment, atop a vigorously star-forming region that is offset from its host galaxy core. The appearance of Lyαand O II, as well as the compact core, would classify the host of SN 2021adxl as a “Blueberry” galaxy, analogous to higher redshift, low-metallicity, star-forming dwarf “Green Pea” galaxies. Using several abundance indicators, we find a metallicity of the explosion environment of only ∼0.1 Z⊙, the lowest reported metallicity for a Type IIn SN environment. SN 2021adxl reaches a peak magnitude ofMr ≈ −20.2 mag and since discovery, SN 2021adxl has faded by only ∼4 magnitudes in therband with a cumulative radiated energy of ∼1.5 × 1050erg over 18 months. SN 2021adxl shows strong signs of interaction with a complex circumstellar medium, seen by the detection of X-rays, revealed by the detection of coronal emission lines, and through multi-component hydrogen and helium profiles. In order to further understand this interaction, we model the Hαprofile using a Monte Carlo electron scattering code. The blueshifted high-velocity component is consistent with emission from a radially thin spherical shell resulting in the broad emission components due to electron scattering. Using the velocity evolution of this emitting shell, we find that the SN ejecta collide with circumstellar material of at least ∼5 M⊙assuming a steady-state mass-loss rate of ∼4 − 6 × 10−3M⊙yr−1for the first ∼200 days of evolution. SN 2021adxl was last observed to be slowly declining at ∼0.01 mag d−1, and if this trend continues, SN 2021adxl will remain observable after its current solar conjunction. Continuing the observations of SN 2021adxl may reveal signatures of dust formation or an infrared excess, similar to that seen for SN 2010jl.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Augmented Reality (AR) is widely considered the next evolution in personal devices, enabling seamless integration of the digital world into our reality. Such integration, however, often requires unfettered access to sensor data, causing significant over privilege for applications that run on these platforms. Through analysis of 17 AR systems and 45 popular AR applications, we explore existing mechanisms for access control in AR platforms, identify key trends in how AR applications use sensor data, and pinpoint unique threats users face in AR environments. Using these findings, we design and implement Erebus, an access control framework for AR platforms that enables fine-grained control over data used by AR applications. Erebus achieves the principle of least privileged through the creation of a domain-specific language (DSL) for permission control in AR platforms, allowing applications to specify data needed for their functionality. Using this DSL, Erebus further enables users to customize app permissions to apply under specific user conditions. We implement Erebus on Google’s ARCore SDK and port five existing AR applications to demonstrate the capability of Erebus to secure various classes of apps. Performance results using these applications and various microbenchmarks show that Erebus achieves its security goals while being practical, introducing negligible performance overhead to the AR system.more » « less
-
Abstract Serial x-ray crystallography can uncover binding events, and subsequent chemical conversions occurring during enzymatic reaction. Here, we reveal the structure, binding and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from Stenotrophomonas maltophilia . Using time-resolved serial synchrotron crystallography, we show the time course of β-lactam hydrolysis and determine ten snapshots (20, 40, 60, 80, 100, 150, 300, 500, 2000 and 4000 ms) at 2.20 Å resolution. The reaction is initiated by laser pulse releasing Zn 2+ ions from a UV-labile photocage. Two metal ions bind to the active site, followed by binding of moxalactam and the intact β-lactam ring is observed for 100 ms after photolysis. Cleavage of β-lactam is detected at 150 ms and the ligand is significantly displaced. The reaction product adjusts its conformation reaching steady state at 2000 ms corresponding to the relaxed state of the enzyme. Only small changes are observed in the positions of Zn 2+ ions and the active site residues. Mechanistic details captured here can be generalized to other MBLs.more » « less