skip to main content

Search for: All records

Creators/Authors contains: "King, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maximum-likelihood (ML) decoding of tail-biting convolutional codes (TBCCs) with S = 2^v states traditionally requires a separate S-state trellis for each of the S possible starting/ending states, resulting in complexity proportional to S^2. Lower-complexity ML decoders for TBCCs have complexity proportional to S log S. This high complexity motivates the use of the wrap-around Viterbi algorithm, which sacrifices ML performance for complexity proportional to S. This paper presents an ML decoder for TBCCs that uses list decoding to achieve an average complexity proportional to S at operational signal-to-noise ratios where the expected list size is close to one. The new decoder uses parallel list Viterbi decoding with a progressively growing list size operating on a single S-state trellis. Decoding does not terminate until the most likely tailbiting codeword has been identified. This approach is extended to ML decoding of tail-biting convolutional codes concatenated with a cyclic redundancy check code as explored recently by Yang et al. and King et al. Constraining the maximum list size further reduces complexity but sacrifices guaranteed ML performance, increasing errors and introducing erasures. 
    more » « less
    Free, publicly-accessible full text available September 4, 2024
  2. This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the Eb/N0 performance of this polar code, where Eb/N0 is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better Eb/N0 performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of Eb/N0. We also show that this optimized TBCC/CRC can attain the same excellent Eb/N0 performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies. 
    more » « less
  3. null (Ed.)
    There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of the soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction is typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs. 
    more » « less
  4. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

    more » « less
  5. Free, publicly-accessible full text available December 1, 2024
  6. Free, publicly-accessible full text available November 1, 2024
  7. Abstract

    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.

    more » « less
    Free, publicly-accessible full text available November 1, 2024
  8. Free, publicly-accessible full text available November 1, 2024