Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The generation of a register of highly coherent, but independent, qubits is a prerequisite to performing universal quantum computation. Here we introduce a qubit encoded in two nuclear spin states of a single 87 Sr atom and demonstrate coherence approaching the minute-scale within an assembled register of individually-controlled qubits. While other systems have shown impressive coherence times through some combination of shielding, careful trapping, global operations, and dynamical decoupling, we achieve comparable coherence times while individually driving multiple qubits in parallel. We highlight that even with simultaneous manipulation of multiple qubits within the register, we observe coherence in excess of 10 5 times the current length of the operations, with $${T}_{2}^{{{{{\mathrm{echo}}}}}}=\left(40\pm 7\right)$$ T 2 echo = 40 ± 7 seconds. We anticipate that nuclear spin qubits will combine readily with the technical advances that have led to larger arrays of individually trapped neutral atoms and high-fidelity entangling operations, thus accelerating the realization of intermediate-scale quantum information processors.more » « less
-
null (Ed.)There has been great progress in soft robot design, manufacture, and control in recent years, and soft robots are a tool of choice for safe and robust handling of objects in conditions of uncertainty. Still, dexterous in-hand manipulation using soft robots remains a challenge. This paper introduces foam robot hands actuated by tendons sewn through a fabric glove. The flexibility of tendon actuation allows for high competence in utilizing deformation for robust in-hand manipulation. We discuss manufacturing, control, and design optimization for foam robots and demonstrate robust grasping and in-hand manipulation on a variety of different physical hand prototypes.more » « less