Historical horticultural plant sales influence native and nonnative species assemblages in contemporary ecosystems. Over half of nonnative, invasive plants naturalized in the United States were introduced as ornamentals, and the spatial and temporal patterns of early introduction undoubtedly influence current invasion ecology. While thousands of digitized nursery catalogs documenting these introductions are publicly available, they have not been standardized in a single database. To fill this gap, we obtained the names of all plant taxa (species, subspecies, and varieties) present in the Biodiversity Heritage Library's (BHL) Seed and Nursery Catalog Collection. We then searched the BHL database for these names and downloaded all available records. We combined BHL records with data from an encyclopedia of heirloom ornamental plants to create a single database of historical nursery sales in the US. Each record represents an individual taxon offered for sale at an individual time in a specific nursery's catalog. We standardized records to the current World Flora Online (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract http://worldfloraonline.org ) accepted taxonomy and appended accepted USDA code, growth habit, and introduction status. We also appended whether taxa were reported as invasive in the Global Plant Invaders (GPI) data set or the Global Invasive Species Database (GISD) or regulated in the conterminous US. Lastly, we geocoded all reported publication locations. The data set contains 2,445,875 records from nurseries in at least 2795 unique locations, with the majority of catalogs published between 1890 and 1950. Nurseries were located in all conterminous states but were concentrated in the eastern US and California. We identified 19,140 unique horticultural taxa, of which 8642 matched taxa in the USDA Plants database. The USDA Plants database is limited to native and naturalized taxa in the US. Native or introduced status was listed in USDA Plants for 7018 of included taxa, while 1642 had an unknown status. The remaining 10,498 taxa are not naturalized according to USDA Plants or are of varieties of native and introduced taxa that did not match USDA Plants taxonomy. The majority of taxa in the Historical Plant Sales (HPS) database with an identified status are native (65.5%; 4596 of 7018 taxa), of which 393 taxa are reported as invasive outside of the US. Of the 2381 introduced taxa, 1103 (46.3%) are reported as invasive somewhere globally. Despite a richer pool of native taxa, most cataloged plant records with an identified status were of introduced taxa (54.1%; 1,045,684 of 1,933,925 records). Plants reported as invasive somewhere globally comprised a large portion of records with an identified status (38.7%; 747,953 of 1,933,925 records) underscoring the large role of ornamental introductions in facilitating plant invasions. The HPS database provides a consolidated and standardized perspective on the history of native, introduced, and invasive plant sales in the US. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/publicdomain/cc0/ ). Individuals who use these data for publication may cite the associated data paper. -
Abstract Most current research on land‐use intensification addresses its potential to either threaten biodiversity or to boost agricultural production. However, little is known about the
simultaneous effects of intensification on biodiversity and yield. To determine the responses of species richness and yield to conventional intensification, we conducted a global meta‐analysis synthesizing 115 studies which collected data for both variables at the same locations. We extracted 449 cases that cover a variety of areas used for agricultural (crops, fodder) and silvicultural (wood) production. We found that, across all production systems and species groups, conventional intensification is successful in increasing yield (grand mean + 20.3%), but it also results in a loss of species richness (−8.9%). However, analysis of sub‐groups revealed inconsistent results. For example, small intensification steps within low intensity systems did not affect yield or species richness. Within high‐intensity systems species losses were non‐significant but yield gains were substantial (+15.2%). Conventional intensification within medium intensity systems revealed the highest yield increase (+84.9%) and showed the largest loss in species richness (−22.9%). Production systems differed in their magnitude of richness response, with insignificant changes in silvicultural systems and substantial losses in crop systems (−21.2%). In addition, this meta‐analysis identifies a lack of studies that collect robust biodiversity (i.e. beyond species richness) and yield data at the same sites and that provide quantitative information on land‐use intensity. Our findings suggest that, in many cases, conventional land‐use intensification drives a trade‐off between species richness and production. However, species richness losses were often not significantly different from zero, suggesting even conventional intensification can result in yield increases without coming at the expense of biodiversity loss. These results should guide future research to close existing research gaps and to understand the circumstances required to achieve such win‐win or win‐no‐harm situations in conventional agriculture.